Übungen zur Vorlesung **Modelltheorie** (WS 2012/13) Dozenten: PD Dr. Markus Junker, Prof. Dr. Martin Ziegler Assistent: Dr. Juan Diego Caycedo Tutor: Christoph Bier B.Sc.

Blatt 9

Aufgabe 1. Show that a type p is isolated if and only if it is isolated as an element in the Stone space.

Aufgabe 2. Prove the following:

- (a) Closed subsets of $S_n(T)$ have the form $\{p \in S_n(T) \mid \Sigma \subseteq p\}$, where Σ is any set of formulas.
- (b) Let T be countable and consistent. Then any meagre¹ subset X of $S_n(T)$ can be omitted, i.e., there is model which omits all $p \in X$.

Aufgabe 3. Let *B* be a subset of \mathfrak{A} . Show that the *restriction (of variables)* map $S_{n+m}(B) \to S_n(B)$ given by $\operatorname{tp}(a, c/B) \mapsto \operatorname{tp}(a/B)$ is open, continuous and surjective. Let *a* be an *n*-tuple in *A*. Show that the fibre over $\operatorname{tp}(a/B)$ is canonically homeomorphic to $S_m(aB)$.

Aufgabe 4. Consider the structure $\mathfrak{M} = (\mathbb{Q}, <)$. Determine all types in $S_1(\mathbb{Q})$. Which of these types are realised in \mathbb{R} ? Which extensions does a type over \mathbb{Q} have to a type over \mathbb{R} ?

 $^{^{1}}$ A subset of a topological space is *nowhere dense* if its closure has no interior. A countable union of nowhere dense sets is *meagre*.

¹http://home.mathematik.uni-freiburg.de/caycedo/lehre/ws12_modell/