Blatt 5

Aufgabe 1. Zeige, daß sich das transitive Hülle Funktional $h: V \longrightarrow V$ rekursiv durch

$$th(x) = x \cup \bigcup_{y \in x} th(y)$$

definieren läßt. (Eine solche Definition ist natürlich nur sinnvoll, wenn das Fundierungsaxiom gilt.)

Aufgabe 2. Das Fundierungsaxiom sei hier nicht vorausgesetzt. Man zeige:

- 1. Für eine Menge a sind äquivalent
 - (a) Es gibt keine unendliche \in -Kette, die bei a beginnt.
 - (b) th(a) ist fundiert. D.h. jede nicht-leere Teilmenge von th(a) hat ein \in -minimales Element.
- 2. Die Klasse aller Mengen, deren transitive Hülle fundiert ist, ist ein Modell von ZFC *inklusive* Fundierung.

Aufgabe 3. Man zeige: der Rang von x ist das kleinste α mit $x \in V_{\alpha+1}$.

Aufgabe 4. Hier setzen wir das Fundierungsaxiom nicht voraus. Man zeige:

- 1. Die Elemente von $\bigcup_{\alpha \in On} V_{\alpha}$ sind genau die Mengen, deren transitive Hülle fundiert ist.
- 2. Satz 5.7 (d.h. $V = \bigcup_{\alpha \in \text{On}} V_{\alpha}$) impliziert das Fundierungsaxiom.