Exercises for the lecture *Model Theory of Fields* (WS 15/16) 14.11.2015

Week 5

1. Let K be a field and $W \subset K^n$ be a K-linear subspace. Notice that W is definable in the field structure, over K. Show that there is a canonical parameter for W in K^m , for some m.

Hint: Let e_1, \ldots, e_n be the standard basis of K^n . Let e_{i_1}, \ldots, e_{i_k} be such that $e_{i_1} + W, \ldots, e_{i_k} + W$ is a basis of the quotient K^n/W . For $i = 1, \ldots, n$, write:

$$e_i = \sum_{j=1}^k \beta_{ij} e_{i_j} + w_i$$

with each β_{ij} in K and each w_i in W. Then $\beta := (\beta_{ij}) \in K^{nk}$ is a canonical parameter for W, i.e. for any $\sigma \in Aut(K)$, $\sigma(\beta) = \beta$ if and only if $\sigma[W] = W$.

2. Let K be a field. Show that, similarly to 1. above, for every K-linear subspace W of $\bigoplus_{i<\omega} K$, there is $\beta \in K^{\omega}$ which works as a canonical parameter for W, i.e. for any $\sigma \in \operatorname{Aut}(K)$, $\sigma(\beta) = \beta$ if and only if $\sigma[W] = W$.