GREEN FIELDS WITH TORSION

JUAN DIEGO CAYCEDO

Let μ denote the group of roots of unity. Let ν be a divisible subgroup of μ.
Let L be the expansion of the language of rings by a unary predicate G. Let \mathcal{C}_{ν} be the class of L-structures ($K,+, \cdot, 0,1, G$) satisfying the following conditions:
(i) $(K,+, \cdot, 0,1)$ is an algebraically closed field of characteristic 0 ,
(ii) G is a divisible subgroup of $\left(K^{\times}, \cdot\right)$,
(iii) the group of torsion elements of G is isomorphic to ν,
(iv) for all $n \geq 1$ and all $y \in\left(K^{\times}\right)^{n}$, the value $\delta(y):=2 \operatorname{tr} . \mathrm{d}(y)-\operatorname{mult} . \operatorname{rk}(y)$ is non-negative.

We shall show below that \mathcal{C}_{0} is an elementary class. This answers a question left open in [Poi01]; there the same result is proved assuming the Conjecture on Intersections with Tori (CIT) (cf. [Poi01, Corollaire 3.5]) and unconditionally only in the case where ν is the trivial group. The idea of replacing the use of the CIT by a combination of the "Weak CIT" and "Manin-Mumford", Facts 0.2 and 0.3 below, comes from [Zil04].

In the definition and facts below, K denotes an algebraically closed field of characteristic 0 .

Definition 0.1. Let V and W be subvarieties of $\left(K^{\times}\right)^{n}$ such that $V \cap W$ is nonempty and let S be an irreducible component S of $V \cap W$.

If

$$
\operatorname{dim} S>\operatorname{dim} V+\operatorname{dim} W-n
$$

then S is said to be an atypical component of the intersection of V and W. Otherwise, that is if

$$
\operatorname{dim} S=\operatorname{dim} V+\operatorname{dim} W-n
$$

S is said to be a typical component of the intersection of V and W.
Let T be a coset of an algebraic subgroup of $\left(K^{\times}\right)^{n}$ with $S \subset T$. If

$$
\operatorname{dim} S>\operatorname{dim} V \cap T+\operatorname{dim} W \cap T-\operatorname{dim} T
$$

then S is said to be an atypical component of the intersection of V and W with respect to T. Otherwise, that is if

$$
\operatorname{dim} S=\operatorname{dim} V \cap T+\operatorname{dim} W \cap T-\operatorname{dim} T
$$

S is said to be a typical component of the intersection of V and W with respect to T.

Fact 0.2 ("Weak CIT", [Zil02]). Let $n \geq 1$. For every algebraic subvariety W of $\left(K^{\times}\right)^{n}$, there exist proper algebraic subgroups T_{1}, \ldots, T_{s} of $\left(K^{\times}\right)^{n}$ with the following property:
for any coset αT of a proper algebraic subgroup T of $\left(K^{\times}\right)^{n}$, if S is an atypical component of the intersection of W and αT then there exist $i \in\{1, \ldots, s\}$ and $\alpha^{\prime} \in\left(K^{\times}\right)^{n}$ such that $S \subset \alpha^{\prime} T_{i}$ and S is a typical component of the intersection of W and αT with respect to $\alpha^{\prime} T_{i}$.
Fact 0.3 ("Manin-Mumford"). For every proper algebraic subvariety W of $\left(K^{\times}\right)^{n}$, there exist proper algebraic subgroups H_{1}, \ldots, H_{r} of $\left(K^{\times}\right)^{n}$ and $\gamma_{1}, \ldots, \gamma_{r} \in \mu$ such that

$$
W \cap \mu^{n}=\bigcup_{j=1}^{r} \gamma_{j}\left(H_{j} \cap \mu^{n}\right)
$$

Proposition 0.4. The class \mathcal{C}_{ν} is elementary.
Proof. It is clear that conditions (i) and (ii) can be expressed by a set L-sentences. It is easy to see that condition (iii) can be expressed by a set of sentences requiring that G has non-trivial p-torsion precisely for those primes p for which ν has nontrivial p-torsion.

We shall now see that, modulo (i),(ii),(iii), condition (iv) is equivalent to the following: for each $n \geq 1$, and each algebraic subvariety W of $\left(K^{\times}\right)^{n}$ defined and irreducible over \mathbb{Q} of dimension $<\frac{n}{2}$,

$$
\forall y\left(\left(y \in W \wedge y \in G^{n} \wedge y \notin W^{*}\right) \rightarrow \bigvee_{1 \leq i \leq s} \bigvee_{\substack{1 \leq j \leq r_{i} \\ H_{i j} \text { proper }}} y^{M^{i}} \in \mu_{i j} H_{i j}\right)
$$

where

- T_{1}, \ldots, T_{s} are the proper algebraic subgroups provided by Fact 0.2 for W, and for $i=1, \ldots, s, M^{i}$ is an $n_{i} \times n$-matrix with integer entries of rank n_{i} such that T_{i} is defined by the system of equations $y^{M^{i}}=1$.
- for each $i=1, \ldots, s, \gamma_{i 1}, \ldots, \gamma_{i r_{i}}$ and $H_{i 1}, \ldots, H_{i r_{i}}$ are as provided by Fact 0.3 for the variety W_{i}, which by definition is the \mathbb{Q}-Zariski closure the set $W^{M^{i}}$; and for each $i, j, \mu_{i j}$ is the set of all roots of unity of the same order as $\gamma_{i j}$.
Note that each set $\mu_{i j} H_{i j}$ is an algebraic subgroup of $\left(K^{\times}\right)^{n}$ of the same dimension as $H_{i j}$; in particular, it is defined over \mathbb{Q}.
- $W^{*}=\bigcup_{i=1}^{s} W^{* i}$ and $W^{* i}$ is the \mathbb{Q}-Zariski closure of the set

$$
\left\{b \in W: \operatorname{dim} W \cap b T_{i}>\operatorname{dim} W-\operatorname{dim} W_{i}\right\}
$$

Note that the above set is the union of the non-generic (i.e. not of minimal dimension) fibres inside W of the map given by $y \mapsto y^{M^{i}}$. By a standard fact, this set is contained in a proper closed subset of W. Therefore $W^{*} \subsetneq$ W.

Assume (K, G) satisfies the sentences above. To see that (K, G) must then also satisfy (iv), suppose towards a contradiction that $b \in\left(K^{\times}\right)^{n}$ is such that $\delta(b)<0$. It is easy to see that we may assume b to be in G^{n} and multiplicatively
independent. Let W be the algebraic locus of b over \mathbb{Q}. Then, since $\delta(b)<0$, we have $\operatorname{dim} W<\frac{n}{2}$. Thus, one of the above sentences corresponds to W. If the disjunction in the sentence is non-empty then we get a multiplicative dependence on b, hence a contradiction. If the disjunction is empty, then the sentence says that the set $\left(W \backslash W^{*}\right) \cap G^{n}$ is empty, but our b is in this set, thus also a contradiction. This proves that (K, G) satisfies (iv).

Conversely, assume that (K, G) satisfies (iv) and let us see that the above sentences hold in (K, G). Let $n \geq 1$ and let W be an algebraic subvariety of $\left(K^{\times}\right)^{n}$ defined and irreducible over \mathbb{Q} of dimension $<\frac{n}{2}$. Suppose b is in the set $\left(W \backslash W^{*}\right) \cap G^{n}$. Since $\operatorname{tr} . \mathrm{d}(b) \leq \operatorname{dim} W<n / 2$ and by assumption $\delta(b) \geq 0$, the tuple b must be multiplicatively dependent. Thus, let T be a proper algebraic subgroup of $\left(K^{\times}\right)^{n}$ containing b of dimension mult. $\operatorname{rk}(b)$.

Let S be an irreducible component of $W \cap T$ containing b. Then S is atypical: to see this note that, on the one hand, S is defined over $\mathbb{Q}^{\text {alg }}$ and so $\operatorname{dim} S \geq$ $\operatorname{tr} . \mathrm{d}(b) \geq \frac{1}{2}$ mult. $\mathrm{rk}(b)=\frac{1}{2} \operatorname{dim} T$ and, on the other hand, since $\operatorname{dim} W<\frac{n}{2}$, we have $\operatorname{dim} W+\operatorname{dim} T-n<\operatorname{dim} T-\frac{n}{2} \leq \frac{1}{2} \operatorname{dim} T$. Therefore, we can find $i \in\{1, \ldots, s\}$ and $\alpha \in\left(K^{\times}\right)^{n}$ such that $S \subset \alpha T_{i}$ and S is a typical component of the intersection of W and T with respect to αT_{i}.

Since S is defined over $\mathbb{Q}^{\text {alg }}$, it has $\mathbb{Q}^{\text {alg }}$ rational points. Hence we may assume $\alpha \in\left(\mathbb{Q}^{\text {alg }}\right)^{n}$. Let us now look at the coefficients of the equations defining the coset αT_{i}, namely $\beta:=\alpha^{M^{i}} \in\left(\mathbb{Q}^{\text {alg }}\right)^{n_{i}}$. Also, $\beta=b^{M^{i}} \in G^{n_{i}}$. Thus, by (iv), $\beta \in \mu^{n_{i}}$. We can now conclude that $b^{M^{i}} \in W_{i} \cap \mu^{n_{i}}=\bigcup_{j=1}^{r_{i}} \gamma_{i j}\left(H_{i j} \cap \mu^{n_{i}}\right)$. Therefore we can find $j \in\left\{1, \ldots, r_{i}\right\}$ such that $b^{M^{i}} \in \gamma_{i j} H_{i j} \subset \mu_{i j} H_{i j}$.

It now suffices to show that $H_{i j}$ is a proper subgroup of $\left(K^{\times}\right)^{n_{i}}$. This follows from the following calculation showing that $\operatorname{dim} W_{i}<n_{i}$: First, from the atypicality of S we have

$$
\operatorname{dim} S>\operatorname{dim} W+\operatorname{dim} T-n
$$

And from the typicality of S with respect to αT_{i} we have

$$
\operatorname{dim} S=\operatorname{dim} W \cap \alpha T_{i}+\operatorname{dim} T \cap \alpha T_{i}-\operatorname{dim} \alpha T_{i}
$$

Combining the last two expressions we get

$$
\operatorname{dim} W+\operatorname{dim} T-n<\operatorname{dim} W \cap \alpha T_{i}+\operatorname{dim} T \cap \alpha T_{i}-\operatorname{dim} \alpha T_{i}
$$

Reorganizing terms and noting that $T=b T$ and $\alpha T_{i}=b T_{i}$,

$$
\begin{aligned}
\operatorname{dim} W-\operatorname{dim} W \cap b T_{i} & <n-\operatorname{dim} b T_{i}+\operatorname{dim} b T \cap b T_{i}-\operatorname{dim} b T \\
& =n-\operatorname{dim} T_{i}+\operatorname{dim} T \cap b T_{i}-\operatorname{dim} T \\
& \leq n-\operatorname{dim} T_{i}=n_{i} .
\end{aligned}
$$

Since b is not in W^{*}, we know $\operatorname{dim} W_{i}=\operatorname{dim} W-\operatorname{dim} W \cap b T_{i}$. Therefore $\operatorname{dim} W_{i}<$ n_{i}.

References

[Poi01] Bruno Poizat. L'égalité au cube. J. Symbolic Logic, 66(4):1647-1676, 2001.
[Zil02] Boris Zilber. Exponential sums equations and the Schanuel conjecture. J. London Math. Soc. (2), 65(1):27-44, 2002.
[Zil04] Boris Zilber. Raising to powers revisited. 2004. Preprint.

