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Expansions of the real ordered field

I R = (R, <,+, 0,−, ·, 1) has QE and is o-minimal.
I o-minimal

I (R, ex) — o-minimal and model complete (Wilkie)
I (R, (x r )r∈K ), for any K ⊂ R.

(where x r := er log x for x > 0).
I non-o-minimal, tame

I (R, ωZ), for any ω > 0,
I (R,U), with U ⊂ R2 the set of all roots of unity.

These have QE up to Boolean combinations of existential
formulas (van den Dries, Gunaydin & van den Dries,
Belegradek & Zilber)

I (R,Sω) where Sω = {(etcos(ωt), etsin(ωt)) : t ∈ R}.
This structure is d-minimal: every definable subset of R is a
finite union of open intervals and discrete sets. (Miller &
Speissegger)

I wild
I (R,Z) — all projective sets are definable,
∼ (R, ωZ, ηZ), for any ω, η > 0 such that logω, log η are
Q-linearly independent (Hieronymi)



Expansions of the complex field

I C = (C,+, 0,−, ·, 1) has QE and is strongly minimal.
I strongly minimal

I Very difficult to find an example of a proper expansion of the
complex field that is strongly minimal.
In fact, it was conjectured that this was impossible (part of
Zilber’s trichotomy conjecture.)

I Hrushovski constructions gives many examples, but not
explicitly.

I Counterpoint (Peterzil & Starchenko, extending Marker):
If C is a proper expansion of the complex field that is definable
in an o-minimal expansion of R (under the the usual
identification C ∼ R2), then the set of real numbers is
definable in C.



Expansions of the complex field

I stable
I (C, Γ), with Γ ≤ C∗ divisible and of finite rank, is ω-stable and

has QE up to Boolean combinations of existential formulas
(van den Dries, Gunaydin).

I Let K be a subfield of C. Consider the 2-sorted structure:

(C,+, (r ·)r∈K )
exp−−→ (C,+, ·),

Assuming Schanuel’s Conjecture, for K ⊂ R of finite
transcendence degree, the structure has QE up to Boolean
combiantions of existential formulas and is superstable (Zilber).
If K = Q(r) with r ∈ R generic in Rexp, then the result is
unconditional (using a theorem of Bays-Kirby-Wilkie).

I (C,G ) with

G = Sω exp(Q) = exp((1 + ωi)R + Q)

is ω-stable and has QE up to Boolean combinations of
existential formulas for ω generic in Rexp. The same holds for
all ωR \ {0}, assuming Schanuel’s Conjecture. (C., Zilber)



Expansions of the complex field

I unstable, yet tame
I Conjecturally, (C, exp).

Conjecture (Zilber): (C, exp) is quasi-minimal, i.e. every
definable subset of C is countable or has countable
complement.

I (C,Z) — is quasiminimal.
I (C,R) — equivalent to R

I wild (C,R,Z) — equivalent to (R,Z).



(1) Expansions of the fields of real and complex numbers

(2) The predimension method

(3) Miller’s theorem and question



The predimension method: SC and Cexp

I Schanuel’s conjecture (SC): If x1, . . . , xn are Q-linearly
independent complex numbers, then
tr. d.Q(x1, ..., xn, exp(x1), . . . , exp(xn)) is at least n.

I Let (F , ex) an exponential field, i.e. a field F together with a
homomorphism

ex : (F ,+)→ (F ∗, ·),
with F algebraically closed and of characteristic zero.

I For n ≥ 1 and x = (x1, . . . , xn) ∈ F n, define

δex(x) := tr. d.Q(x , ex(x))− lin. d.Q(x).

I A tuple c ∈ F n (n ≥ 0) is said to be self-sufficient if for every
tuple x extending c ,

δex(x/c) := δex(x)− δex(c) ≥ 0.

I SC holds iff in (C, exp), δex(x) ≥ 0 for all x
iff ∅ is self-sufficient in (C, exp).



The predimension method: Raising to powers

I Fix a subfield K of C of finite transcendence degree. Let

(V ,+, (r ·)r∈K )
ex−→ (F ,+, ·)

be a 2-sorted structure where (V ,+, (r ·)r∈K ) is a K -vector
space, (F ,+, ·) is an ACF of char 0, and ex is a surjective
homomorphism from V to K×.

I For n ≥ 1 and x = (x1, . . . , xn) ∈ V n, define

δK (x) := lin. d.K (x) + tr. d.Q(ex(x))− lin. d.Q(x).

I A tuple c ∈ V n is said to be self-sufficient if for every tuple x
extending c ,

δ(x/c) := δK (x)− δ(c) ≥ 0.

I SC implies that in (C,+, (r ·)r∈K )
exp−−→ (C,+, ·),

δK (x) ≥ − tr. d.(K ) for all x .
I Hence, SC implies that there exists a self-sufficient tuple in

the structure.



The predimension method: Raising to powers

I For i = 1, 2, let

Vi := (Vi ,+, (r ·)r∈K )
exi−→ (Fi ,+, ·)

be structures as above. Assume the following:
I there is a partial isomorphism c1 7→ c2 from V1 to V2 with ci a

self-sufficient tuple in Vi ,
I each Vi is “existentially closed (with respect to self-sufficient

embeddings)”,
I each Vi is ω-saturated.

I Then the set of partial isomorpshims

F = {x1
∼=7→ x2 : xi self-sufficient in Vi}

is a back-and-forth system from V1 to V2.

I Moreover, every finite partial isomorphism that preserves
existential formulas extends to a member of F .



The predimension method: Raising to powers

I Suppose c is a self-sufficient tuple in the structure

(C,+, (r ·)r∈K )
exp−−→ (C,+, ·),

and the structure is “existentially closed”.
I Then the complete theory of the structure expanded by

constants for c is axiomatized by sentences expressing the
following:

I basic algebraic conditions,
I “c is self-suficient”,
I “the structure is existentially closed”.

I Also, the theory has QE up to Boolean combinations of
existential formulas.



The predimension method: Raising to powers

Finding self-sufficient tuples without SC:

Theorem (Bays, Kirby, Wilkie)

If K = Q(r) with r generic in Rexp, then δK (x) ≥ 0 for all x.

This means that ∅ is self-sufficient in the structure

(C,+, (r ·)r∈K )
exp−−→ (C,+, ·),
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Miller’s theorem and question

Definition

I A (real) linear vector field is an R-linear map F : Rn → Rn.

I A solution of F is a differentiable map γ : I → Rn defined on
a non-trivial interval I ⊂ R such that

γ′(t) = F (γ(t)), for all t ∈ I .

I A trajectory of F is the image of a solution.

Example

Consider the linear map F given by the matrix(
1 −ω
ω 1

)
.

γ(t) = (et cosωt, et sinωt) is a solution of F on R.
Hence Sω is a trajectory.



Miller’s theorem and question

Theorem (C. Miller)

Let G be a collection of locally closed trajectories of linear vector
fields such that each Γ ∈ G is the image of a solution on an
unbounded interval.
Then (R, (Γ)Γ∈G) is, up to interdefinability, one of the following:

I (R, (x r )r∈K ) for some subfield K of R,

I (R, exp),

I (R,Sω) for some non-zero ω ∈ R,

I (R,Z).



Question

Question: What about non-locally closed trajectories?
Basic case to be understood: For irrational ω ∈ R, let

Gω = {(cos t, sin t, cosωt, sinωt) : t ∈ R} ≤ (S1)2.

This is a dense subgroup of (S1)2. It is a non- locally closed
trajectory of a linear vector field.
Note

Gω = {(e it , eωit) : t ∈ R}

i.e. Gω is the relation of raising to the power ω on S1.



Theorem: Raising to real powers on S1.

Theorem (joint with A. Gunaydin and P. Hieronymi)

Let K be a subfield of R of finite transcendence degee. For n ≥ 1
and ω = (ω1, . . . , ωn) ∈ Kn, let

Gω = {(y1, . . . , yn) ∈ (S1)n : yω1
1 · · · y

ωn
n = 1}.

Assuming Schanuel’s conjecture, the structure (R, (Gω)ω) has,
after adding constants for appropriate elements, QE up to Boolean
combinations of existential formulas.
If K = Q(ω0) with ω0 ∈ R generic in Rexp, then the result holds
unconditionally. (by Bays-Kirby-Wilkie)
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