Tame expansions of the real and complex fields

Juan Diego Caycedo

Universität Freiburg

Model Theory in Wrocław, June 2012

Outline

(1) Expansions of the fields of real and complex numbers

(2) The predimension method

(1) Expansions of the fields of real and complex numbers

(2) The predimension method

Expansions of the real ordered field

- $ightharpoonup \mathbb{R} = (\mathbb{R}, <, +, 0, -, \cdot, 1)$ has QE and is o-minimal.
- o-minimal
 - ▶ (\mathbb{R}, e^{x}) o-minimal and model complete (Wilkie)
 - $(\mathbb{R}, (x^r)_{r \in K})$, for any $K \subset \mathbb{R}$. (where $x^r := e^{r \log x}$ for x > 0).
- non-o-minimal, tame
 - $(\mathbb{R}, \omega^{\mathbb{Z}})$, for any $\omega > 0$,
 - (\mathbb{R}, U) , with $U \subset \mathbb{R}^2$ the set of all roots of unity. These have QE up to Boolean combinations of existential formulas (van den Dries, Gunaydin & van den Dries, Belegradek & Zilber)
 - (\mathbb{R}, S_{ω}) where $S_{\omega} = \{(e^t cos(\omega t), e^t sin(\omega t)) : t \in \mathbb{R}\}$. This structure is *d-minimal*: every definable subset of \mathbb{R} is a finite union of open intervals and discrete sets. (Miller & Speissegger)
- wild
 - (\mathbb{R}, \mathbb{Z}) all projective sets are definable, $\sim (\mathbb{R}, \omega^{\mathbb{Z}}, \eta^{\mathbb{Z}})$, for any $\omega, \eta > 0$ such that $\log \omega, \log \eta$ are \mathbb{Q} -linearly independent (Hieronymi)

Expansions of the complex field

- $ightharpoonup \mathbb{C} = (\mathbb{C}, +, 0, -, \cdot, 1)$ has QE and is strongly minimal.
- strongly minimal
 - Very difficult to find an example of a proper expansion of the complex field that is strongly minimal.
 In fact, it was conjectured that this was impossible (part of Zilber's trichotomy conjecture.)
 - Hrushovski constructions gives many examples, but not explicitly.
 - ▶ Counterpoint (Peterzil & Starchenko, extending Marker): If $\mathcal C$ is a proper expansion of the complex field that is definable in an o-minimal expansion of $\mathbb R$ (under the usual identification $\mathbb C \sim \mathbb R^2$), then the set of real numbers is definable in $\mathcal C$.

Expansions of the complex field

stable

- (\mathbb{C} , Γ), with $\Gamma \leq \mathbb{C}^*$ divisible and of finite rank, is ω -stable and has QE up to Boolean combinations of existential formulas (van den Dries, Gunaydin).
- ▶ Let K be a subfield of \mathbb{C} . Consider the 2-sorted structure:

$$(\mathbb{C},+,(r\cdot)_{r\in K})\stackrel{\exp}{\longrightarrow} (\mathbb{C},+,\cdot),$$

Assuming Schanuel's Conjecture, for $K \subset \mathbb{R}$ of finite transcendence degree, the structure has QE up to Boolean combiantions of existential formulas and is superstable (Zilber). If $K = \mathbb{Q}(r)$ with $r \in \mathbb{R}$ generic in \mathbb{R}_{exp} , then the result is unconditional (using a theorem of Bays-Kirby-Wilkie).

 \blacktriangleright (\mathbb{C} , G) with

$$G = S_{\omega} \exp(\mathbb{Q}) = \exp((1 + \omega i)\mathbb{R} + \mathbb{Q})$$

is ω -stable and has QE up to Boolean combinations of existential formulas for ω generic in \mathbb{R}_{exp} . The same holds for all $\omega \mathbb{R} \setminus \{0\}$, assuming Schanuel's Conjecture. (C., Zilber)

Expansions of the complex field

- unstable, yet tame
 - ▶ Conjecturally, (\mathbb{C}, \exp) . Conjecture (Zilber): (\mathbb{C}, \exp) is *quasi-minimal*, i.e. every definable subset of \mathbb{C} is countable or has countable complement.
 - ▶ (\mathbb{C}, \mathbb{Z}) is quasiminimal.
 - (\mathbb{C}, \mathbb{R}) equivalent to \mathbb{R}
- wild $(\mathbb{C}, \mathbb{R}, \mathbb{Z})$ equivalent to (\mathbb{R}, \mathbb{Z}) .

(1) Expansions of the fields of real and complex numbers

(2) The predimension method

The predimension method: SC and \mathbb{C}_{exp}

- ▶ Schanuel's conjecture (SC): If $x_1, ..., x_n$ are \mathbb{Q} -linearly independent complex numbers, then tr. d. $\mathbb{Q}(x_1, ..., x_n, \exp(x_1), ..., \exp(x_n))$ is at least n.
- ► Let (*F*, ex) an exponential field, i.e. a field *F* together with a homomorphism

$$\mathsf{ex}: (F,+) \to (F^*,\cdot),$$

with F algebraically closed and of characteristic zero.

▶ For $n \ge 1$ and $x = (x_1, ..., x_n) \in F^n$, define

$$\delta_{\mathsf{ex}}(x) := \mathsf{tr.d.}_{\mathbb{Q}}(x,\mathsf{ex}(x)) - \mathsf{lin.d.}_{\mathbb{Q}}(x).$$

▶ A tuple $c \in F^n$ $(n \ge 0)$ is said to be *self-sufficient* if for every tuple x extending c,

$$\delta_{\mathsf{ex}}(x/c) := \delta_{\mathsf{ex}}(x) - \delta_{\mathsf{ex}}(c) \ge 0.$$

▶ SC holds **iff** in (\mathbb{C} , exp), $\delta_{ex}(x) \ge 0$ for all x **iff** \emptyset is self-sufficient in (\mathbb{C} , exp).

ightharpoonup Fix a subfield K of $\mathbb C$ of finite transcendence degree. Let

$$(V,+,(r\cdot)_{r\in K})\stackrel{\mathsf{ex}}{\longrightarrow} (F,+,\cdot)$$

be a 2-sorted structure where $(V,+,(r\cdot)_{r\in K})$ is a K-vector space, $(F,+,\cdot)$ is an ACF of char 0, and ex is a surjective homomorphism from V to K^{\times} .

▶ For $n \ge 1$ and $x = (x_1, ..., x_n) \in V^n$, define

$$\delta_{\mathcal{K}}(x) := \mathsf{lin.d.}_{\mathcal{K}}(x) + \mathsf{tr.d.}_{\mathbb{Q}}(\mathsf{ex}(x)) - \mathsf{lin.d.}_{\mathbb{Q}}(x).$$

▶ A tuple $c \in V^n$ is said to be *self-sufficient* if for every tuple x extending c,

$$\delta(x/c) := \delta_{\kappa}(x) - \delta(c) \ge 0.$$

- ► SC implies that in $(\mathbb{C}, +, (r \cdot)_{r \in K}) \xrightarrow{\exp} (\mathbb{C}, +, \cdot)$, $\delta_K(x) \ge -\operatorname{tr.d.}(K)$ for all x.
- Hence, SC implies that there exists a self-sufficient tuple in the structure.

▶ For i = 1, 2, let

$$\mathcal{V}_i := (V_i, +, (r \cdot)_{r \in K}) \xrightarrow{\mathsf{ex}_i} (F_i, +, \cdot)$$

be structures as above. Assume the following:

- ▶ there is a partial isomorphism $c_1 \mapsto c_2$ from \mathcal{V}_1 to \mathcal{V}_2 with c_i a self-sufficient tuple in \mathcal{V}_i ,
- each V_i is "existentially closed (with respect to self-sufficient embeddings)",
- each V_i is ω -saturated.
- ▶ Then the set of partial isomorpshims

$$\mathcal{F} = \{x_1 \stackrel{\cong}{\mapsto} x_2 : x_i \text{ self-sufficient in } \mathcal{V}_i\}$$

is a back-and-forth system from \mathcal{V}_1 to \mathcal{V}_2 .

Moreover, every finite partial isomorphism that preserves existential formulas extends to a member of \mathcal{F} .

► Suppose *c* is a self-sufficient tuple in the structure

$$(\mathbb{C},+,(r\cdot)_{r\in K})\xrightarrow{\exp}(\mathbb{C},+,\cdot),$$

and the structure is "existentially closed".

- ▶ Then the complete theory of the structure expanded by constants for *c* is axiomatized by sentences expressing the following:
 - basic algebraic conditions,
 - "c is self-suficient",
 - "the structure is existentially closed".
- Also, the theory has QE up to Boolean combinations of existential formulas.

Finding self-sufficient tuples without SC:

Theorem (Bays, Kirby, Wilkie)

If $K = \mathbb{Q}(r)$ with r generic in \mathbb{R}_{exp} , then $\delta_K(x) \geq 0$ for all x.

This means that \emptyset is self-sufficient in the structure

$$(\mathbb{C},+,(r\cdot)_{r\in K})\xrightarrow{\exp}(\mathbb{C},+,\cdot),$$

(1) Expansions of the fields of real and complex numbers

(2) The predimension method

Miller's theorem and question

Definition

- ▶ A (real) linear vector field is an \mathbb{R} -linear map $F : \mathbb{R}^n \to \mathbb{R}^n$.
- ▶ A *solution* of F is a differentiable map $\gamma: I \to \mathbb{R}^n$ defined on a non-trivial interval $I \subset \mathbb{R}$ such that

$$\gamma'(t) = F(\gamma(t))$$
, for all $t \in I$.

▶ A *trajectory* of *F* is the image of a solution.

Example

Consider the linear map F given by the matrix

$$\begin{pmatrix} 1 & -\omega \\ \omega & 1 \end{pmatrix}$$
.

 $\gamma(t) = (e^t \cos \omega t, e^t \sin \omega t)$ is a solution of F on \mathbb{R} . Hence S_ω is a trajectory.

Miller's theorem and question

Theorem (C. Miller)

Let $\mathcal G$ be a collection of locally closed trajectories of linear vector fields such that each $\Gamma \in \mathcal G$ is the image of a solution on an unbounded interval.

Then $(\mathbb{R}, (\Gamma)_{\Gamma \in \mathcal{G}})$ is, up to interdefinability, one of the following:

- ▶ $(\mathbb{R}, (x^r)_{r \in K})$ for some subfield K of \mathbb{R} ,
- ▶ (ℝ, exp),
- ▶ (\mathbb{R}, S_{ω}) for some non-zero $\omega \in \mathbb{R}$,
- $ightharpoonup (\mathbb{R},\mathbb{Z}).$

Question

Question: What about non-locally closed trajectories? Basic case to be understood: For irrational $\omega \in \mathbb{R}$, let

$$G_{\omega} = \{(\cos t, \sin t, \cos \omega t, \sin \omega t) : t \in \mathbb{R}\} \leq (S^1)^2.$$

This is a dense subgroup of $(S^1)^2$. It is a non- locally closed trajectory of a linear vector field.

Note

$$G_{\omega} = \{(e^{it}, e^{\omega it}) : t \in \mathbb{R}\}$$

i.e. G_{ω} is the relation of raising to the power ω on S^1 .

Theorem: Raising to real powers on S^1 .

Theorem (joint with A. Gunaydin and P. Hieronymi)

Let K be a subfield of $\mathbb R$ of finite transcendence degee. For $n \ge 1$ and $\omega = (\omega_1, \dots, \omega_n) \in K^n$, let

$$G_{\omega} = \{(y_1, \ldots, y_n) \in (S^1)^n : y_1^{\omega_1} \cdots y_n^{\omega_n} = 1\}.$$

Assuming Schanuel's conjecture, the structure $(\mathbb{R}, (G_{\omega})_{\omega})$ has, after adding constants for appropriate elements, QE up to Boolean combinations of existential formulas.

If $K = \mathbb{Q}(\omega_0)$ with $\omega_0 \in \mathbb{R}$ generic in \mathbb{R}_{exp} , then the result holds unconditionally. (by Bays-Kirby-Wilkie)