MORE ON KHOVANOV HOMOLOGY

Radmila Sazdanović

NC State

Summer School on Modern Knot Theory Freiburg 6 June 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

WHERE WERE WE?

(ロ) (同) (三) (三) (三) (○) (○)

- Classification of knots- using knot invariants!
- Q How can we get better invariants?
 - A By upgrading/categorifying old ones!
- Khovanov link homology lifts the Jones polynomial.

$$J(L)(q) = \sum_{j} \left(\sum_{i} (-1)^{i} r k Kh(L) \right) q^{j} = \chi(Kh(L))$$

skein relation \iff long exact sequence of Kh(L)

- Q Why does the choice of algebra A make sense?
 - A1 It's graded dimension is $J(\bigcirc)$
 - A2 Frobenius algebra structure is an algebraic counterpart of the topology of 2d TQFT.

KHOVANOV HOMOLOGY IS STRONGER THAN THE JONES POLYNOMIAL

$Kh(5_1)$		i								
		-5	-4	-3	-2	-1	0			
	-3						\mathbb{Z}			
	-5						\mathbb{Z}			
	-7				Z					
j	-9				\mathbb{Z}_2					
J	-11		\mathbb{Z}	\mathbb{Z}						
	-13		\mathbb{Z}_2							
	-15	\mathbb{Z}								

$Kh(10_{132})$		i										
		-7	-6	-5	-4	-3	-2	-1	0			
j	-1							Z	Z			
	-3							\mathbb{Z}_2	\mathbb{Z}			
	-5					\mathbb{Z}	\mathbb{Z}^2					
	-7				Z	\mathbb{Z}_2	\mathbb{Z}_2					
	-9				$\mathbb{Z} \oplus \mathbb{Z}_2$	\mathbb{Z}						
	-11		\mathbb{Z}	\mathbb{Z}								
	-13		\mathbb{Z}_2									
	-15	\mathbb{Z}										

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Torsion is invisible for the Jones!
- *Kh*(*K*) can have non-trivial groups of the same rank in gradings of different parity! They cancel out in the Euler characteristic.

KHOVANOV HOMOLOGY DIFFERENT COEFFICIENTS

- So far: $Kh(K, \mathbb{Z})$ and $Kh(K, \mathbb{Q})$
- Next: $Kh(K, \mathbb{Z}_p)$ and $Kh(K, \mathbb{Z}_2)$ in particular.
- How do these homologies relate?

THEOREM (UNIVERSAL COEFFICIENT THEOREM)

$$H^{n}(C,\mathbb{Z}_{p})\cong H^{n}(C,\mathbb{Z})\otimes\mathbb{Z}_{p}\oplus Tor(H^{n+1}(C),\mathbb{Z}_{p})$$

Or in the language of Khovanov link homology:

$$\mathit{Kh}^{i,j}(\mathit{K},\mathbb{Z}_p)\cong \mathit{Kh}^{i,j}(\mathit{K},\mathbb{Z})\otimes\mathbb{Z}_p\oplus \mathit{Tor}(\mathit{Kh}^{i+1,j}(\mathit{K},\mathbb{Z}_p))$$

How to compute? Tor(A, B) = 0 if A or B is free or torsion-free, Tor($\mathbb{Z}_p, \mathbb{Z}_q$) = $\mathbb{Z}_{GCD(p,q)}$ $\mathbb{Z} \otimes \mathbb{Z}_p = \mathbb{Z}_p, \mathbb{Z}_p \otimes \mathbb{Z}_q = \mathbb{Z}_{GCD(p,q)}, \mathbb{Z}_2 \otimes \mathbb{Z}_3 = 0, \mathbb{Z}_6 \otimes \mathbb{Z}_4 = \mathbb{Z}_2$

ODD, EVEN, UNIFIED KHOVANOV

Kh Even (standard) Khovanov homology

Kho Odd (Ozsváth, Rasmussen, Szabó 2007)

*Kh*_u Unified theory over $R = \mathbb{Z}[\varepsilon]/(\varepsilon^2 - 1)$ (Putyra, 2010)

 $MOD\mathbb{Z}_2$ even or odd theory computed over \mathbb{Z}_2

RELATIONS BETWEEN THEORIES

- $Kh(L, \mathbb{Z}_2) \cong Kh_o(L, \mathbb{Z}_2)$
- If D' is the mirror of D then
 - · Both Khovanov chain complexes and homologies are dual.
 - In odd Khovanov this is true only for homology.
- $C_u^{i,j}/(\varepsilon-1)\cong C^{i,j}$ and $C_u^{i,j}/(\varepsilon+1)\cong C_o^{i,j}$ (Putyra, 2010)
- Computing KH_u requires classification of R-modules...

INVARIANTS IN FORM OF HOMOLOGICAL OPERATIONS

- Algebraic operations on *Kh* and *Kh*_o arising from the action of *Kh*_u are link invariants!
- Trivial for alternating knots.
- Computations for all for all prime non-alternating knots with at most 16 crossings by A. Shumakovitch
- Among 201,702 knots with at most 15 crossings (not counting mirror images) there are 99 pairs with the same *Kh* and *Kh*_o but different homological operations!
- Among 33,672 knots with at most 14 crossings there are 9 pairs with the above property.
- Nothing could distinguish mirror images of these pairs!
- Kh_u is stronger than Kh and Kh_o combined!

REDUCED KHOVANOV HOMOLOGY

 $\widetilde{Kh}(L), \widetilde{Kh_o}(L)$

- Construction follows that of the corresponding Khovanov homology with one modification
 - · Pick a basepoint on the knot diagram away from any crossings
 - Kauffman circle that contains the basepoint is labeled by x
- Reduced Khovanov homologies of a knot do not depend on the position of the basepoint.
- If L is a link, Kh(L, Z) depends on the choice of component the basepoint belongs to, but Kh(L, Z₂) and Kh_o(L, Z) do not!

- $Kh(L, \mathbb{Z}_2) \cong \widetilde{Kh}(L, \mathbb{Z}_2) \otimes \mathbb{Z}_2[x]/x^2$ (Shumakovitch, 2004)
- $Kh_o(L,\mathbb{Z}) \cong \widetilde{Kh_0}(L,\mathbb{Z})\{-1\} \oplus \widetilde{Kh_0}(L,\mathbb{Z})\{+1\}$

Kh(16*n*197566, Z)

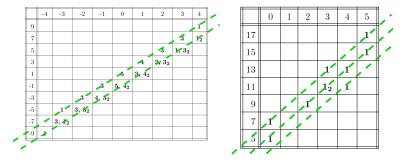
	-2	-1	0	1	2	3	4	5	6	7	8	9	10
29													1
27												4	12
25											7	$1, 3_2 1_4$	
23										12	$4, 8_{2}$		
21									15	$7, 12_2$	1_2		
19								17	$12, 16_2$				
17							16	$15, 18_2$	1_2				
15						15	$17, 16_2$	1_2					
13					10	$16, 15_2$							
11				6	$15, 10_2$								
-9			3	$10,6_2$									
-7		1	$7, 2_2$										
5		$2, 1_{2}$											
3	1												

Kh(16*n*197566′, Z)

	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
-3													1
-5												2	1_2
-7											7	$1,2_2$	
-9										10	$3, 6_2$		
-11									15	$6, 10_2$			
-13								16	$10, 15_2$				
-15							$17, 1_2$	$15, 16_2$					
-17						$15, 1_2$	$16, 18_2$						
-19					12	$17, 16_2$							
-21				$7, 1_2$	$15, 12_2$								
-23			4	$12, 8_2$									
-25		1	$7, 3_2 \frac{1_4}{1_4}$										
-27		$4,1_2$											
-29	1												

HOMOLOGICAL THICKNESS

- *hw_R(K)* homological width of *K* is the minimal number of adjacent diagonals with 2*i* - *j* = const that support *Kh(K, R)*
- Homological width $hw_R(K) \ge 2$ is at least two.
- A knot is thin if and only if it has homological width 2, otherwise it is thick.



THICKNESS OF THE KHOVANOV HOMOLOGY

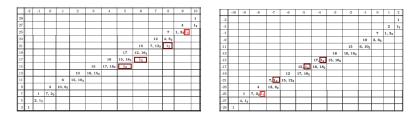


FIGURE: *Kh*(16*n*197566) is thick over \mathbb{Z} and \mathbb{Z}_2 , while Khovanov homology of the mirror image is thin over \mathbb{Z} but thick over \mathbb{Z}_2

DOES THICKNESS CHANGE WITH RESPECT TO R? Sometimes. There are examples of knots such that $hw_{\mathbb{Q}} < hw_{\mathbb{Z}}$, $hw_{\mathbb{Z}_2}$ and $hw_{\mathbb{Z}} < hw_{\mathbb{Z}_2}$

THICKNESS OF THE KHOVANOV HOMOLOGY

- $hw_{\mathbb{Q}}(K_1 \sharp K_2) = hw_{\mathbb{Q}}(K_1) + hw_{\mathbb{Q}}(K_2) 2.$
- $K_1 \sharp K_2$ is \mathbb{Q} -thin if and only if both K_1 and K_2 are \mathbb{Q} -thin.
- Turaev genus gives an upper bound on homological width of Khovanov homology (Champanerkar-Kofman-Stoltzfus, Manturov)

$$hw(L) - 2 \leq g_T(L)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 Question: Given a knot do we know if its Khovanov homology is thin or thick?

BACKGROUND

SIGNATURE OF A KNOT $\sigma(K)$

is a knot invariant that can be computed from the Seifert surface S.

- The Seifert form of *S* is the pairing $\phi : H_1(S) \times H_1(S) \rightarrow \mathbb{Z}$ given by taking the linking number $lk(a^+, b^-)$ where and a^+, b^- indicate the pushoffs in positive and negative directions.
- Given a basis {b₁,..., b_{2g}} for H₁(S) the Seifert form can be represented as a Seifert matrix V_{ij} = φ(b_i, b_j)
- $\sigma(K)$ is the signature of the matrix $V + V^{\perp}$

- $\sigma(K) = \text{signature}(G) \mu(D)$ (Gordon, Litherland)
- Determinant of K: det $K = |\det G|$

THICKNESS OF THE KHOVANOV HOMOLOGY

QUASI-ALTERNATING KNOTS

QA is the smallest set of links that contains the unknot such that if L is a link which admits a projection with a crossing such that L is in QA if

- **()** both resolutions L_0 and L_∞ at that crossing are in QA, and
- $2 \det(L) = \det(L_0) + \det(L_\infty)$

All alternating knots are in QA

THEOREM (E.S. LEE 2002)

Every non-split alternating link is R-thin for every R.

THEOREM (MANOLESCU-OZSVÁTH, 2007)

Quasi-alternating links are R-thin for every R. Reduced Khovanov homology $\widetilde{Kh}^{i,j}(L)$ is trivial unless $2i - j = \sigma(K)$

QA-KNOTS ARE THIN

Let
$$L = \langle \rangle$$
, $L_0 = \langle \rangle$ and $L_{\infty} = \langle \rangle$

LEMMA

If $det(L_0)$, $det(L_{\infty}) > 0$ and $det(L_+) = det(L_0) + det(L_{\infty})$, then for $e = n_-(D_h) - n_+(D_+)$: $\sigma(L_0) - \sigma(L_+) = 1$ and $\sigma(L_{\infty}) - \sigma(L_+) = e$.

PROOF.

Theorem *QA* knots satisfy the above lemma, so we have the standard Khovanov LES with grading $\delta = 2i - j$

$$\cdots \to \widetilde{Kh}^{*+\sigma(L_{\infty})}(L_{\infty}) \to \widetilde{Kh}^{*+\sigma(L)}(L) \to \widetilde{Kh}^{*+\sigma(L_{0})}(L_{0}) \to \widetilde{Kh}^{*+\sigma(L_{\infty})-1}(L_{\infty}) \to \ldots$$

- Therefore *L* is thin if L_0 and L_1 are thin.
- Apply the same argument to *L* = *L*₀ and *L* = *L*₁, apply the Lemma, and repeat iteratively.
- This process ends when we reach the unlink, whose Khovanov homology is thin.

THICKNESS OF KHOVANOV HOMOLOGY

THEOREM (E.S. LEE 2002)

Jones polynomial and signature determine the free part of the Khovanov homology of non-split alternating links.

THEOREM (KHOVANOV, 2002)

Adequate non-alternating knots are known to be R-thick.

PROPOSITION

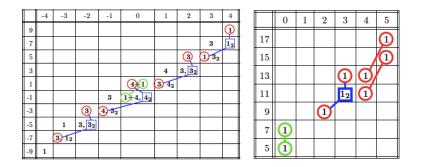
 $\widetilde{Kh}^{i,j}(L)$ where L is an alternating link L has no 2-torsion.

PROOF.

Universal coefficient theorem gives us short exact sequences:

 $0 \to \widetilde{Kh}^{i,j}(L,\mathbb{Z}) \otimes \mathbb{Z}_{2} \to \widetilde{Kh}^{i,j}(L,\mathbb{Z}_{2}) \to \operatorname{Tor}(\widetilde{Kh}^{i+1,j}(L,\mathbb{Z}),\mathbb{Z}_{2}) \to 0$ $0 \to \widetilde{Kh}^{i-1,j}(L,\mathbb{Z}) \otimes \mathbb{Z}_{2} \to \widetilde{Kh}^{i-1,j}(L,\mathbb{Z}_{2}) \to \operatorname{Tor}(\widetilde{Kh}^{i,j}(L,\mathbb{Z}),\mathbb{Z}_{2}) \to 0$ Existence of \mathbb{Z}_{2} in $\widetilde{Kh}^{i,j}(L)$ implies that $\widetilde{Kh}(L,\mathbb{Z}_{2})$ is not thin!

PATTERNS IN KHOVANOV HOMOLOGY



Most entries are arranged in "knight move" pairs except two entries in the 0th homological degree. Torsion fits nicely into this pattern...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

KNIGHT MOVE

(ロ) (同) (三) (三) (三) (○) (○)

CONJECTURE (BAR-NATAN, GAROUFALIDIS, KHOVANOV)

For every knot L, the ranks of its Khovanov homology Kh(L) are arranged in "knight-move" pairs, except for two adjacent entries in the i = 0 column, which have to be decreased by 1.

STATUS

- proved for QH-thin knots (Lee, 2002), therefore true for all non-split alternating links and quasi-alternating.
- also true for knots with homology supported on 3 diagonals;
- no counter-example is known

LEE'S DIFFERENTIAL

(日) (日) (日) (日) (日) (日) (日)

- Work over \mathbb{Q} (and \mathbb{Z}_p for odd p).
- Define Q-linear maps

$$\begin{split} m_{Lee} &: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \\ \Delta_{Lee} &: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A} \\ \end{split} \qquad \begin{array}{l} m_{Lee} &: \begin{cases} 1 \otimes 1 \mapsto 0 & 1 \otimes x \mapsto 0 \\ x \otimes 1 \mapsto 0 & x \otimes x \mapsto 1 \\ 1 \mapsto 0 \\ x \mapsto 1 \otimes 1. \\ \end{array}$$

- Lee's differential *d*_{Lee} is defined using the maps before and has bidegree (1, 4) i.e. it does not preserve *q*-grading ... but it is a filtered map.
- (*C*(*L*), *d*, *d*_{*Lee*}) form a double complex...

BICOMPLEXES

- (*M*, *d_h*, *d_v*) is a double complex if *M* is a bigraded module over some ring *R* and
 - $d_h, d_v: M \to M$ are differentials of bidegree (1,0) and (0,1)
 - d_h, d_v anti-commute: $d_h \cdot d_v + d_v \cdot d_h = 0$
- d_h induces a differential d_h^* on $H(M, d_v)$ and so does d_v .
- Total complex(*Tot*(*M*), *d*) with *M* a graded module over *R* with a homogeneous degree *n* part of *Tot*(*M*) equal to ⊕_{k+l=n}*M*^{k,l} and *d* = *d*_h + *d*_v

•
$$d^2 = d_h^2 + d_h d_v + d_v d_h + d_v^2 = 0$$

- There exists a spectral sequence $\{E_r, d_r\}$ with $E_0 = M$, $E_1 = H(M, d_h)$, and $E_2 = H((H, d_h), d_v^*)$.
- If *M* has bounded support, then this spectral sequence converges to *H*(*Tot*(*M*), *d*).

LEE'S SPECTRAL SEQUENCE

- (*C*(*L*), *d*, *d*_{*Lee*}) form a double complex so there is an associated spectral sequence.
- The bidegree of the map on the *r*-th page of the spectral sequence is (1, 4*r*).
- In all known examples (over Q) the spectral sequence collapses after the bidegree (1,4) differential.
- In such cases, Kh(D; Q) can be arranged into "knight move" pairs.

THEOREM (E.S. LEE)

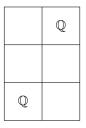
Let L be an oriented n component link, $\{S_i\}_{i=1}^n$. dimKh_{Lee}(L) = 2ⁿ and dimKhⁱ_{Lee} = 2|E $\subset \{2, \ldots, n\}|(\sum_{j \in E, k \notin E} 2lk(S_j, S_k) = i)|$

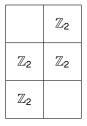
LEE-RASMUSSEN SPECTRAL SEQUENCE

THEOREM (LEE, RASMUSSEN)

There is a spectral sequence whose E_2 -term is Kh(L) which converges to $Kh_{Lee}(L)$.

For a knot, the spectral sequence converges to $\mathbb{Q} \oplus \mathbb{Q}$.





Shumakovitch (2004) showed that this spectral sequence also exists over \mathbb{Z}_p for *p* an odd prime.

knight move pair

tetromino

RASMUSSEN'S S-INVARIANT

"In a beautiful article Eun Soo Lee introduced a second differential on the Khovanov complex of a knot (or link) and showed that the resulting (double) complex has non-interesting homology. This is a very interesting result."

D. Bar Natan

- Important: the entire spectral sequence, starting with the E²-page is a link invariant
- Only two generators survive in the limit and they are in q-gradings s_{max} and s_{min} which differ by 2
- Rasmussen's invariant $s(K) := \frac{1}{2}(s_{max} s_{min})$

RASMUSSEN'S S-INVARIANT

- *s*(*K*) is additive
- Taking a mirror of a knot changes the sign of the *s*-invariant.
- *s*(◯) = 0
- *s*(*K*) is a concordance invariant (i.e. all concordant knots have the same *s*-invariant)
- Slice genus of K (4-ball genus) g*(K) is the minimum genus of a smooth surface smoothly embedded in B⁴ whose boundary is K.

THEOREM (RASMUSSEN)

Rasmussen's s-invariant provides a lower bound on the slice genus

 $|s(K)| \leq 2g^*(K)$

MILNOR CONJECTURE

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

THEOREM (RASMUSSEN)

Given a positive knot K with

n crossings and

• *r* circles in the canonical homogeneous smoothing then s(K) = -r + n + 1

COROLLARY Torus knot T(p,q) is a positive knot and s(T(p,q)) = (p-1)(q-1)

THEOREM (KRONHEIMER, MROWKA; RASMUSSEN) Slice genus of a torus knot T(p,q) is $\frac{1}{2}(p-1)(q-1)$.

KHOVANOV HOMOLOGY APPLICATIONS

THEOREM (MROWKA, KRONHEIMER 2010)

Khovanov homology detects the unknot: if the rank of the reduced Khovanov homology of L is equal to 1 then L is the unknot.

THEOREM (HEDDEN, NI 2012)

Khovanov homology detects the 2-component unlink. Note: the Jones polynomial does not. There are infinite families of links whose Jones polynomial is the same as that of an n–component unlink.

(ロ) (同) (三) (三) (三) (○) (○)

THEOREM (BATSON, SEED 2013)

Kh(L) gives lower bound for splitting number of L.

Thank you

Challenge: Find knots in Freiburg!