TORSION IN KHOVANOV LINK HOMOLOGY

Radmila Sazdanović
NC State

Summer School on Modern Knot Theory
Freiburg
7 June 2017
TORSION IN KHOVANOV HOMOLOGY

CONJECTURE (SHUMAKOVITCH)

Let L be any prime link other than the unknot or the Hopf link. Then $Kh(L)$ contains 2-torsion.

- The conjecture implies that Khovanov homology is an unknot detector.
- Kronheimer and Mrowka (2010) proved Khovanov homology is an unknot detector using gauge theory.
- The conjecture is known to be true in many cases.
Computations

- Experimentally, $Kh(L)$ has an abundance of torsion: among all 1,701,936 prime knots with at most 16 crossings.
- All non-trivial knots up to 14 crossings have only 2-torsion.
- 38 knots with 15 crossings and 129 knots with 16 crossings have 4-torsion.
- The first known knot with odd torsion is $T(5, 6)$-torus knot.
- Infinite families of links whose Khovanov homology contains \mathbb{Z}_n, $2 < n < 9$ and \mathbb{Z}_{2n}-torsion for $n < 24$.
METHODS FOR PROVING THINGS ABOUT TORSION IN $\text{Kh}(L)$

- Explicit construction
 (Asaeda, Przytycki, Silvero, Mukherjee, Wang, Yang)

- Connections with Hochschild homology of algebras
 (Khovanov, Przytycki)

- Relations with chromatic graph homology
 (Helme-Guizon, Lowrance, Pabiniak, Przytycki, Rong, S., Scofield)

- Spectral sequence arguments
 (Lowrance, S., Shumakovitch)
Let P_n be the polygon with n vertices.

Let $C_n(A)$ be the space generated by labelings of the vertices of P_n with elements of A.

Define a map $C_n(A) \to C_{n-1}(A)$ obtained by contracting edges and multiplying the labels on the identified vertices.

Przytycki (2005) showed this complex gives the Hochschild homology $HH(A)$ and the Khovanov homology of $Kh(T_2,n)$ in certain gradings.

Allows for explicit computations of 2-torsion inside of $Kh(T_2,n)$.
Hochschild homology gives a sort of comultiplication free version of Khovanov homology for a polygon.

Helme-Guizon and Rong (2004) define the chromatic graph cohomology $H(G)$.

$H(G)$ a comultiplication free version of Khovanov homology for any graph or as

$H(G)$ an extension of Hochschild homology from cycles to graphs.

Its definition follows a similar recipe as the construction of Khovanov homology.
CORRESPONDENCE BETWEEN LINK DIAGRAMS AND GRAPHS

- **Kauffman state** is a collection of simple closed curves obtained by taking an A or B resolution at each crossing.

- Graph $G_s(D)$: vertices are Kauffman circles, edges are crossings shared by circles.

- $G_A(D) / G_B(D)$ graphs corresponding to the all-A/ all-B state.
KAUFFMAN STATES
Spanning subgraphs
KAUFFMAN STATES AND SPANNING SUBGRAPHS
KAUFFMAN STATES AND SPACES
SPANNING SUBGRAPHS AND SPACES
Spaces for both
MULTIPLICATION UNTIL A CYCLE CLOSES
Theorem (Helme-Guizon, Przytycki, Rong - 2006)

If the length \(g \) of the shortest cycle in \(G \) is greater than one

- \(Kh(D) \cong H(G_A) \) in the first \(g - 1 \) supported \(i \)-gradings
- \(\text{Tor } Kh(D) \cong \text{Tor } H(G_A) \) in the \(g \)th \(i \)-grading.
Adequate and semi-adequate links

- A link L is *adequate* if it has a diagram where both $G_A(D)$ and $G_B(D)$ have no loops.

- A link L is *semi-adequate* if it has a diagram D where either $G_A(D)$ or $G_B(D)$ has no loops.

- Alternating links are adequate.

- Many links are semi-adequate: at least 249,649 of the 253,293 knots with 15 crossings are semi-adequate (Stoimenow ’12).
Explicit computation results

Theorem (Asaeda, Przytycki - 2004)

1. If $G_A(D)$ is loop-less and contains a cycle of odd length, then $Kh(D)$ contains 2-torsion.

2. If $G_A(D)$ is loop-less and contains a cycle of even length with an edge that is not part of a bigon, then $Kh(D)$ contains 2-torsion.

3. If D is prime and alternating and D is not the unknot or Hopf link, then either $G_A(D)$ or $G_B(D)$ contains an edge that is not part of a bigon. Thus $Kh(D)$ contains 2-torsion.

Remark. Shumakovitch’s conjecture is true for alternating links and “many” semi-adequate links.
Corollaries on Khovanov Homology

- The Khovanov homology of semi-adequate links contains 2-torison if $G_A(D)$ contains
 - an odd cycle or
 - an even cycle with an edge that is not part of a bigon.

- The Khovanov homology of any semi-adequate link where $G_A(D)$ has girth at least 3 contains 2-torsion (Przytycki, S.)

- Explicit formulas for torsion in certain bigradings of Khovanov homology of
 - positive 3-braids by Przytycki-S.
 - certain classes of pretzel links by Scofield

- Shumakovitch’s conjecture is true for all semi-adequate links except possibly those where $G_A(D)$ only has 2-cycles.
BACK TO SPECTRAL SEQUENCES

• \((C_{i,j}(K), d, d_v)\) is a double complex
 • \(dC_{i,j}(K), d\) Khovanov chain complex, \(d_v : M \to M\) differentials of bidegree \((0, 1)\)
 • \(d, d_v\) anti-commute: \(d \cdot d_v + d_v \cdot d = 0\)

• \(d_v\) induces a differential \(d_v^*\) on \(H(C_{i,j}, d) = Kh(K)\)

• Total complex \((\text{Tot}(C_{i,j}), D)\) is graded with \(\text{Tot}(C_{i,j})^n = \bigoplus_{k+l=n} C_{k,l}^{i,j}\)

 and \(D = d + d_v\) and \(D^2 = d^2 + dd_v + dd_h + d_v^2 = 0\)

• \(\exists\) a spectral sequence \(\{E_r, d_r\}\) with \(E_0 = \{C_{i,j}(K)\}, E_1 = Kh(K),\)
 and \(E_2 = H(Kh(K), d_v^*)\).

• If \(M\) has bounded support, then this spectral sequence converges to \(H(\text{Tot}(M), d)\).

• Good news: One can find \(E_\infty\)

• Bad: pages \(E_r\) and \(d_r\) for \(r \neq 0, 1, \infty\) are often elusive.
SPECTRAL SEQUENCES

- Khovanov homology and related invariants arise in many spectral sequences.

- These spectral sequences are often only defined over certain coefficient rings (e.g. \(\mathbb{Q}\), \(\mathbb{Z}_2\), or \(\mathbb{Z}_p\) for odd \(p\)).

- Use the behavior of these sequences to prove or disprove the existence of torsion.

- Recall that in all known examples (over \(\mathbb{Q}\)) the Lee spectral sequence collapses after the bidegree \((1, 4)\) differential.

- In such cases, \(Kh(D; \mathbb{Q})\) can be arranged into “knight move” pairs.
No odd torsion theorem for Khovanov homology

Theorem (Shumakovitch 2004)

If L is homologically thin, then $\text{Kh}(L)$ contains no odd torsion.

<table>
<thead>
<tr>
<th>$\text{Kh}(T(2,5))$</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>-7</td>
<td></td>
<td></td>
<td>\mathbb{Z}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td></td>
<td></td>
<td>\mathbb{Z}_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td></td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-13</td>
<td></td>
<td>\mathbb{Z}_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td></td>
<td>\mathbb{Z}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(Kh(K) \) CONTAINS NO TORSION OF ODD ORDER

Suppose that \(Kh(K; \mathbb{Q}) \) is above.
\(Kh(K) \) CONTAINS NO TORSION OF ODD ORDER

Then \(Kh(K; \mathbb{Z}_p) \) has at least these summands.
\(\text{Kh}(K) \) CONTAINS NO TORSION OF ODD ORDER

The free part of \(\text{Kh}(K) \) looks as above and recall that all torsion appears only on the bottom diagonal.
Suppose that there exists \mathbb{Z}_{p^k} in $Kh(K)$ for some odd p. Let the pictured \mathbb{Z}_{p^k} summand be in the maximum i-grading of any p^m torsion in $Kh(K)$.
$Kh(K)$ CONTAINS NO TORSION OF ODD ORDER

Then we have the corresponding copy of \mathbb{Z}_p in $Kh(K, \mathbb{Z}_p)$
Theorem. \(Kh(K, \mathbb{Z}_p) \) can be arranged in knight move pairs.
Kh(K) CONTAINS NO TORSION OF ODD ORDER

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td>Z_p</td>
</tr>
</tbody>
</table>

The universal coefficient theorem implies that $Kh(K; \mathbb{Z}_p)$ and $Kh(K)$ looks like above. **Contradiction!**
Only 2-torsion

- Khovanov homology of thin links has no odd torsion
- All torsion in $Kh(K)$ must be of order 2^k for some k.
- Next we outline A. Shumakovitch’s unpublished proof that the Khovanov homology of a homologically thin knot has only 2-torsion.
- Proving that $Kh(K)$ only contains \mathbb{Z}_2-torsion and no \mathbb{Z}_{2^k} amounts to showing that the Bockstein spectral sequence converges on the correct (2nd) page
- In order to prove convergence, we analyze relation between the Bockstein differentials and some new maps on Khovanov homology.
Vertical maps ν on $Kh(D; \mathbb{Z}_2)$

Shumakovitch defines maps ν of bidegree $(0, 2)$ on $C(D; \mathbb{Z}_2)$.

Properties of ν

- ν commutes with the Khovanov differential, and thus induces a map $\nu^* : Kh(D; \mathbb{Z}_2) \to Kh(D; \mathbb{Z}_2)$.

- Homology with respect to ν is trivial, and so the induced map ν^* is an isomorphism on homology level.
Properties of the vertical map

- ν^* is an isomorphism.
- The “vertical” Euler characteristic of $Kh(D; \mathbb{Z}_2)$ is trivial.

<table>
<thead>
<tr>
<th></th>
<th>\mathbb{Q}</th>
<th>\mathbb{Z}_2</th>
<th>\mathbb{Z}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Q}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- knight move pair
- tetromino
- with \mathbb{Z} coefficients
Knights moves

so far...

next show

over \mathbb{Q}

over \mathbb{Z}_2

over \mathbb{Z}
Spectral sequence associated to an exact couple

- Given the exact triangle on the left, define $d_1 = j_1 \circ k_1 : E_1 \to E_1$.

- $d_1^2 = j_1 \circ (k_1 \circ j_1) \circ k_1 = 0$ i.e. d is a differential

$$E_2 = H(E_1, d_1) \text{ and } D_2 = \text{Im}(i_1) = \text{Ker}(j_1)$$

and maps $i_2, j_2,$ and k_2 can be defined so that the triangle on the right is exact.

- Iterating this process yields a spectral sequence $\{E_r, d_r\}_{r \geq 1}$.

- Note If D, E bigraded modules then $\text{deg}(i) = (-1, 1)$,
 $\text{deg}(j) = (0, 0)$, $\text{deg}(k) = (1, 0)$, therefore $\text{deg}(d_r) = (r, 1 - r)$
Which exact couple to use?

- Given Khovanov chain complex (any complex of free Abelian groups) and a prime p
- Consider the short exact sequence of coefficient rings
 \[0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\text{mod } 2} \mathbb{Z}_2 \to 0 \]
- It induces a short exact sequence of Khovanov chain complexes
 \[0 \to C(D) \xrightarrow{\times 2} C(D) \xrightarrow{\text{mod } 2} C(D; \mathbb{Z}_2) \to 0, \]
- and, in turn, a long exact sequence on homology
 \[\cdots \to Kh(D) \xrightarrow{\times 2} Kh(D) \xrightarrow{\text{mod } 2} Kh(D; \mathbb{Z}_2) \xrightarrow{\partial} Kh(D) \to \cdots. \]

We have an exact couple!
Define the Bockstein homomorphism
\(\beta : Kh(D; \mathbb{Z}_p) \to Kh(D; \mathbb{Z}_2) \) by \(\beta = \partial \mod p \).

\(\beta \) is the connecting homomorphism induced from
\(0 \to \mathbb{Z}_p \to \mathbb{Z}_p^2 \to \mathbb{Z}_p \to 0 \)

For a finitely generated chain complex, like Khovanov, there exists a spectral sequence \(\{ B_r, b_r \} \) with \(B_1 = Kh(D; \mathbb{Z}_2) \) and \(b_1 = \beta \) that converges to the free \(Kh(D) \otimes \mathbb{Z}_p \).

\(b_r \) is induced from \(0 \to \mathbb{Z}_{p^r} \to \mathbb{Z}_{p^{2r}} \to \mathbb{Z}_{p^r} \to 0 \)

\(B_r^* \cong \text{im}(H^*(C; \mathbb{Z}_{p^r}) \xrightarrow{\times p^{r-1}} H^*(C; \mathbb{Z}_{p^r})) \cong \text{im}(Kh^*(C; \mathbb{Z}_{p^r}) \xrightarrow{\times p^{r-1}} Kh^*(C; \mathbb{Z}_{p^r})) \)
More on the Bockstein Spectral Sequence

The \mathbb{Z}_2-Bockstein spectral sequence satisfies the following.

- The E_1 page of the Bockstein spectral sequence is $H(G; \mathbb{Z}_2)$.

- The E_∞ page of the Bockstein spectral sequence is $[Kh(K)/\text{Tor }Kh(K)] \otimes \mathbb{Z}_2$.

- If the Bockstein spectral sequence converges at the 2nd page, then $Kh(K)$ has no torsion of order 2^k for $k \geq 2$.

Theorem

$Kh(D)$ has no 2^k torsion if and only if the Bockstein spectral sequence collapses at the kth page.
Goal. Show that the Bockstein spectral sequence collapses at the first page for homologically thin links.

- \(H(G) = \mathbb{Z}^{a_0} \oplus \mathbb{Z}_2^{a_1} \oplus \mathbb{Z}_4^{a_2} \oplus \cdots \oplus \mathbb{Z}_2^{a_k} \).

- \(E_1 = \mathbb{Z}_2^{a_0} \oplus \mathbb{Z}_2^{a_1} \oplus \mathbb{Z}_2^{a_1} \oplus \mathbb{Z}_2^{a_2} \oplus \mathbb{Z}_2^{a_2} \oplus \cdots \oplus \mathbb{Z}_2^{a_k} \oplus \mathbb{Z}_2^{a_k} \).

- \(E_2 = \mathbb{Z}_2^{a_0} \oplus \mathbb{Z}_2^{a_2} \oplus \mathbb{Z}_2^{a_2} \oplus \cdots \oplus \mathbb{Z}_2^{a_k} \oplus \mathbb{Z}_2^{a_k} \).

- \(E_\infty = \mathbb{Z}_2^{a_0} \).

New new Goal: If \(\beta \) is the Bockstein map on the \(E_1 \) page, then we want to show that the rank of \(\beta \) is the number of tetrominoes \(N \) in \(Kh(G; \mathbb{Z}_2) \).
Turner’s differential with \mathbb{Z}_2 coefficients

- Define \mathbb{Z}_2-linear maps

$$m_T : A \otimes A \to A$$

$$\Delta_T : A \to A \otimes A$$

- There is a differential $d_T : C^{i,j}(G; \mathbb{Z}_2) \to C^{i+1,j+2}(G; \mathbb{Z}_2)$.

- It induces a map $d_T^* : Kh^{i,j}(G; \mathbb{Z}_2) \to H^{i+1,j+2}(G; \mathbb{Z}_2)$.

\[
\begin{align*}
\Delta_T : & \begin{cases}
1 \otimes 1 \mapsto 0 & 1 \otimes x \mapsto 0 \\
x \otimes 1 \mapsto 0 & x \otimes x \mapsto x
\end{cases} \\
\end{align*}
\]
The Turner differential

- $(C(D; \mathbb{Z}_2), d, d_T)$ form a double complex, and so there is an associated spectral sequence.
- d_T commutes with the usual Khovanov differential, and so there is an induced map $d^*_\text{Turner}: Kh(D; \mathbb{Z}_2) \to Kh(D; \mathbb{Z}_2)$.
- For a knot, the above spectral sequence converges to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- If the homology is thin, the last non-zero map in the spectral sequence is d^*_T.

\[\nu^* \quad \beta \quad d^*_T \quad \nu^* \]
Putting it all together

1. \(\nu^* : \text{Kh}(D; \mathbb{Z}_2) \rightarrow \text{Kh}(D; \mathbb{Z}_2) \) is an isomorphism.
2. The Turner spectral sequence collapses at the first page.
3. \(d_T^* = \nu^* \circ \beta + \beta \circ \nu^* \).
4. \(\nu^*_\uparrow \circ d_T^* = d_T^* \circ \nu^*_\uparrow \).
5. On each diagonal, \(\text{rank } d_T^* = N \).
6. \(\text{rank } \beta = N \).
TORSION IN KHOVANOV HOMOLOGY OF HOMOLOGICALLY THIN KNOTS

THEOREM (SHUMAKOVITCH)
If K is homologically thin, then its Khovanov homology only has 2-torsion.

COROLLARY
The Khovanov homology $Kh(Kh, \mathbb{Z})$ of an alternating knot is determined by its Jones polynomial and signature.

COROLLARY
If K is a nontrivial, homologically thin knot, then its Khovanov homology contains 2-torsion.

Remark. The second corollary requires Kronheimer-Mrowka’s result that Khovanov homology detects the unknot.
Computations of odd torsion

- Torus knots (5, 6), (5, 7), (5, 8), and (5, 9) have 5-torsion in their Khovanov homology.

- Przytycki and Sazdanović predicted that the closure K of

 \[
 \sigma_1^2 \sigma_2^2 \sigma_1^3 \sigma_2 \sigma_1 \sigma_3 \sigma_2^2 \sigma_3 \sigma_1^2 \sigma_3 \sigma_2 \sigma_1^2 \sigma_3 \sigma_2^2 \sigma_4 \sigma_3^2
 \]

 has 5-torsion in its Khovanov homology.

- Shumakovich (2012) confirmed that K has 5-torsion in its Khovanov homology by showing that the difference of the Poincare polynomials of $Kh(K; \mathbb{Z}_5)$ and $Kh(K; \mathbb{Z}_7)$ is

 \[
 (t^{12} + t^{11})q^{51} + (t^{11} + t^{10})q^{47}.
 \]
$K\text{H}_5(K) = q^{31}t^0 + q^{33}t^0 + q^{35}t^2 + q^{39}t^3 + 2q^{37}t^4 + q^{39}t^4 + 2 + q^{41}t^5 + q^{43}t^5 + q^{39}t^6 + 2q^{41}t^6 + 2q^{43}t^7 + 2q^{45}t^7 + 4q^{41}t^8 + 3q^{43}t^8 + q^{47}t^8 + 13q^{43}t^9 + 4q^{45}t^9 + 4q^{47}t^9 + 2q^{43}t^{10} + 29q^{45}t^{10} + 14q^{47}t^{10} + q^{51}t^{10} + 9q^{45}t^{11} + 44q^{47}t^{11} + 31q^{49}t^{11} + q^{51}t^{11} + 2q^{45}t^{12} + 34q^{47}t^{12} + 68q^{49}t^{12} + 42q^{51}t^{12} + 2q^{53}t^{12} + 11q^{47}t^{13} + 85q^{49}t^{13} + 97q^{51}t^{13} + 59q^{53}t^{13} + 45q^{49}t^{14} + 159q^{51}t^{14} + 142q^{53}t^{14} + 63q^{55}t^{14} + 137q^{51}t^{15} + 245q^{53}t^{15} + 202q^{55}t^{15} + 9q^{57}t^{15} + 345q^{53}t^{16} + 5376q^{55}t^{16} + 237q^{57}t^{16} + 54q^{59}t^{16} + 735q^{55}t^{17} + 589q^{57}t^{17} + 260q^{59}t^{17} + 37q^{61}t^{17} + 1328q^{57}t^{18} + 953q^{59}t^{18} + 253q^{61}t^{18} + 21q^{63}t^{18} + 2040q^{59}t^{19} + 1501q^{61}t^{19} + 220q^{63}t^{19} + 9q^{65}t^{19} + 2729q^{61}t^{20} + 2149q^{63}t^{20} + 173q^{65}t^{20} + 2q^{67}t^{20} + 2q^{61}t^{21} + 3203q^{63}t^{21} + 2779q^{65}t^{21} + 109q^{67}t^{21} + 11q^{63}t^{22} + 3344q^{65}t^{22} + 3219q^{67}t^{22} + 50q^{69}t^{22} + 36q^{65}t^{23} + 3127q^{67}t^{23} + 3345q^{69}t^{23} + 16q^{71}t^{23} + 81q^{67}t^{24} + 2608q^{69}t^{24} + 3116q^{71}t^{24} + 3q^{73}t^{24} + 137q^{69}t^{25} + 1934q^{71}t^{25} + 2572q^{73}t^{25} + 191q^{71}t^{26} + 1271q^{73}t^{26} + 1853q^{75}t^{26} + 228q^{73}t^{27} + 759q^{75}t^{27} + 1134q^{77}t^{27} + 238q^{75}t^{28} + 446q^{77}t^{28} + 568q^{79}t^{28} + 219q^{77}t^{29} + 294q^{79}t^{29} + 218q^{81}t^{29} + 175q^{79}t^{30} + 226q^{81}t^{30} + 56q^{83}t^{30} + 119q^{81}t^{31} + 175q^{83}t^{31} + 7q^{85}t^{31} + 65q^{83}t^{32} + 119q^{85}t^{32} + 26q^{85}t^{33} + 65q^{87}t^{33} + 7q^{87}t^{34} + 26q^{89}t^{34} + q^{89}t^{35} + 7q^{91}t^{35} + q^{93}t^{36}$
\[KH_7(K) = q^{31}t^0 + q^{33}t^0 + q^{35}t^2 + q^{39}t^3 + 2q^{37}t^4 + q^{39}t^4 + 2q^{41}t^5 + q^{43}t^5 + q^{39}t^6 + 2q^{41}t^6 + 2q^{43}t^7 + 2q^{45}t^7 + 4q^{41}t^8 + 3q^{43}t^8 + q^{47}t^8 + 13q^{43}t^9 + 4q^{45}t^9 + 4q^{47}t^9 + 2q^{43}t^{10} + 29q^{45}t^{10} + 13q^{47}t^{10} + q^{51}t^{10} + 9q^{45}t^{11} + 43q^{47}t^{11} + 31q^{49}t^{11} + 2q^{45}t^{12} + 34q^{47}t^{12} + 68q^{49}t^{12} + 41q^{51}t^{12} + 2q^{53}t^{12} + 11q^{47}t^{13} + 85q^{49}t^{13} + 97q^{51}t^{13} + 59q^{53}t^{13} + 45q^{49}t^{14} + 159q^{51}t^{14} + 142q^{53}t^{14} + 63q^{55}t^{14} + 137q^{51}t^{15} + 245q^{53}t^{15} + 202q^{55}t^{15} + 59q^{57}t^{15} + 345q^{53}t^{16} + 376q^{55}t^{16} + 237q^{57}t^{16} + 54q^{59}t^{16} + 735q^{55}t^{17} + 589q^{57}t^{17} + 260q^{59}t^{17} + 37q^{61}t^{17} + 1328q^{57}t^{18} + 953q^{59}t^{18} + 253q^{61}t^{18} + 21q^{63}t^{18} + 2040q^{59}t^{19} + 1501q^{61}t^{19} + 220q^{63}t^{19} + 9q^{65}t^{19} + 2729q^{61}t^{20} + 2149q^{63}t^{20} + 173q^{65}t^{20} + 2q^{67}t^{20} + 2q^{61}t^{21} + 3203q^{63}t^{21} + 2779q^{65}t^{21} + 109q^{67}t^{21} + 11q^{63}t^{22} + 3344q^{65}t^{22} + 3219q^{67}t^{22} + 50q^{69}t^{22} + 36q^{65}t^{23} + 3127q^{67}t^{23} + 3345q^{69}t^{23} + 16q^{71}t^{23} + 81q^{67}t^{24} + 2608q^{69}t^{24} + 3116q^{71}t^{24} + 3q^{73}t^{24} + 137q^{69}t^{25} + 1934q^{71}t^{25} + 2572q^{73}t^{25} + 191q^{71}t^{26} + 1271q^{73}t^{26} + 1853q^{75}t^{26} + 228q^{73}t^{27} + 1134q^{77}t^{27} + 238q^{75}t^{28} + 446q^{77}t^{28} + 568q^{79}t^{28} + 219q^{77}t^{29} + 294q^{79}t^{29} + 218q^{81}t^{29} + 759q^{75}t^{27} + 175q^{79}t^{30} + 226q^{81}t^{30} + 56q^{83}t^{30} + 119q^{81}t^{31} + 175q^{83}t^{31} + 7q^{85}t^{31} + 65q^{83}t^{32} + 119q^{85}t^{32} + 26q^{85}t^{33} + 65q^{87}t^{33} + 7q^{87}t^{34} + 26q^{89}t^{34} + q^{89}t^{35} + 7q^{91}t^{35} + q^{93}t^{36} \]
STILL MYSTERIOUS

- Torsion in reduced homology
 - 2-torsion appears first for 13-crossing knots (13n3663)
 - the simplest knot having odd torsion in reduced homology is $T(5, 6)$ and that is \mathbb{Z}_3

- the simplest knot having odd torsion in unreduced homology is $T(5, 6)$ which has a copy of \mathbb{Z}_3 and a copy of \mathbb{Z}_5

- some knots, e.g. $T(5, 6)$, have odd torsion in unreduced homology which is not seen in the reduced theory, but the other way around is also possible: $T(7, 8)$ has an odd torsion group in reduced that is not seen in unreduced.
Questions

• How can we generate odd torsion in $Kh(L)$?

• Torsion of thick knots?

 Shumakovitch conjectures that there is only \mathbb{Z}_2 and \mathbb{Z}_4 in knots whose Khovanov homology is supported on 3 diagonals.

• Can we explain the difference in torsion in various versions of Khovanov homology?

• Exploiting torsion in functorality.

• What does torsion in $Kh(L)$ tell us about the link?

• Can torsion be used to distinguish links that Jones can not? Distinguish between elements families of links with trivial Jones polynomial (Eliahou, Kaufman, Thistlethwaite)
Thank you

Challenge: Find knots in Freiburg!