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TORSION IN KHOVANOV HOMOLOGY

CONJECTURE (SHUMAKOVITCH)
Let L be any prime link other than the unknot or the Hopf link. Then
Kh(L) contains 2-torsion.

• The conjecture implies that Khovanov homology is an unknot
detector.

• Kronheimer and Mrowka (2010) proved Khovanov homology is
an unknot detector using gauge theory.

• The conjecture is known to be true in many cases.



COMPUTATIONS

• Experimentally, Kh(L) has an abundance of torsion: among all
1,701,936 prime knots with at most 16 crossings

• all non-trivial knots up to 14 crossings have only 2-torsion

• 38 knots with 15 crossings and 129 knots with 16 crossings have
4-torsion

• the first known knot with odd torsion T (5,6)-torus knot.

• Infinite families of links whose Khovanov homology contains Zn,
2 < n < 9 and Z2n -torsion for n < 24.



METHODS FOR PROVING THINGS ABOUT

TORSION IN Kh(L)

• Explicit construction
(Asaeda,Przytycki, Silvero, Mukherjee, Wang, Yang)

• Connections with Hochschild homology of algebras
(Khovanov, Przytycki)

• Relations with chromatic graph homology
(Helme-Guizon, Lowrance, Pabiniak, Przytycki, Rong, S.,
Scofield)

• Spectral sequence arguments
(Lowrance, S., Shumakovitch)



HOCHSCHILD HOMOLOGY OF

A = Z[x ]/(x2) AND Kh(T2,n)

• Let Pn be the polygon with n vertices.

• Let Cn(A) be the space generated by labelings of the vertices of
Pn with elements of A.

• Define a map Cn(A)→ Cn−1(A) obtained by contracting edges
and multiplying the labels on the identified vertices.

• Przytycki (2005) showed this complex gives the Hochschild
homology HH(A) and the Khovanov homology of Kh(T2,n) in
certain gradings.

• Allows for explicit computations of 2-torsion inside of Kh(T2,n).



FROM HOCHSCHILD TO CHROMATIC

GRAPH COHOMOLOGY

• Hochschild homology gives a sort of comultiplication free version
of Khovanov homology for a polygon.

• Helme-Guizon and Rong (2004) define the chromatic graph
cohomology H(G).

• H(G) a comultiplication free version of Khovanov homology for
any graph or as

• H(G) an extension of Hochschild homology from cycles to
graphs.

• Its definition follows a similar recipe as the construction of
Khovanov homology.



CORRESPONDENCE BETWEEN LINK

DIAGRAMS AND GRAPHS

• Kauffman state is a collection of simple closed curves obtained
by taking an A or B resolution at each crossing.

A B

• Graph Gs(D): vertices are Kauffman circles, edges are crossings
shared by circles.

• GA(D) /GB(D) graphs corresponding to the all-A/ all-B state.

DD s+(D) GD



HYPERCUBE



KAUFFMAN STATES



SPANNING SUBGRAPHS



KAUFFMAN STATES AND SPANNING

SUBGRAPHS



KAUFFMAN STATES AND SPACES
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SPACES FOR BOTH
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MULTIPLICATION UNTIL A CYCLE

CLOSES

A⊗3

A⊗2

A⊗2

A⊗2

A

A

A

6=



PARTIAL ISOMORPHISM PICTURE

Kh(D) ∼= H(G) Tor ∼=
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THEOREM (HELME-GUIZON, PRZYTYCKI, RONG - 2006)
If the length g of the shortest cycle in G is greater than one
• Kh(D) ∼= H(GA) in the first g − 1 supported i-gradings
• Tor Kh(D) ∼= Tor H(GA) in the gth i-grading.



ADEQUATE AND SEMI-ADEQUATE LINKS

• A link L is adequate if it has a diagram where both GA(D) and
GB(D) have no loops.

• A link L is semi-adequate if it has a diagram D where either
GA(D) or GB(D) has no loops.

• Alternating links are adequate.
- semi-adequate

+ semi-adequate

adequate

• Many links are semi-adequate: at least 249,649 of the 253,293
knots with 15 crossings are semi-adequate (Stoimenow ’12).



EXPLICIT COMPUTATION RESULTS

THEOREM (ASAEDA, PRZYTYCKI - 2004)

1 If GA(D) is loop-less and contains a cycle of odd length, then
Kh(D) contains 2-torsion.

2 If GA(D) is loop-less and contains a cycle of even length with an
edge that is not part of a bigon, then Kh(D) contains 2-torsion.

3 If D is prime and alternating and D is not the unknot or Hopf link,
then either GA(D) or GB(D) contains an edge that is not part of a
bigon. Thus Kh(D) contains 2-torsion.

Remark. Shumakovitch’s conjecture is true for alternating links and
“many” semi-adequate links.



COROLLARIES ON KHOVANOV

HOMOLOGY

• The Khovanov homology of semi-adequate links contains
2-torison if GA(D) contains

• an odd cycle or

• an even cycle with an edge that is not part of a bigon.

• The Khovanov homology of any semi-adequate link where GA(D)
has girth at least 3 contains 2-torsion (Przytycki, S.)

• Explicit formulas for torsion in certain bigradings of Khovanov
homology of

• positive 3-braids by Przytycki-S.
• certain classes of pretzel links by Scofield

• Shumakovitch’s conjecture is true for all semi-adequate links
except possibly those where GA(D) only has 2-cycles.



BACK TO SPECTRAL SEQUENCES

• (Ci,j (K ),d ,dv ) is a double complex
• dCi,j(K ), d Khovanov chain complex, dv : M → M differentials of

bidegree (0, 1)
• d , dv anti-commute: d · dv + dv · d = 0

• dv induces a differential d∗v on H(Ci,j ,d) = Kh(K )

• Total complex (Tot(Ci,j ),D) is graded with Tot(Ci,j )
n =

⊕
k+l=n

Ck,l
k,l

and D = d + dv and D2 = d2 + ddv + ddh + d2
v = 0

• ∃ a spectral sequence {Er ,dr} with E0 = {Ci,j (K )}, E1 = Kh(K ),
and E2 = H(Kh(K ),d∗v ).

• If M has bounded support, then this spectral sequence
converges to H(Tot(M),d).

• Good news: One can find E∞
• Bad: pages Er and dr for r 6= 0,1,∞ are often elusive.



SPECTRAL SEQUENCES

• Khovanov homology and related invariants arise in many spectral
sequences.

• These spectral sequences are often only defined over certain
coefficient rings (e.g. Q, Z2, or Zp for odd p).

• Use the behavior of these sequences to prove or disprove the
existence of torsion.

• Recall that in all known examples (over Q) the Lee spectral
sequence collapses after the bidegree (1,4) differential.

• In such cases, Kh(D;Q) can be arranged into “knight move”
pairs.



NO ODD TORSION THEOREM FOR

KHOVANOV HOMOLOGY

THEOREM (SHUMAKOVITCH 2004)
If L is homologically thin, then Kh(L) contains no odd torsion.

Kh(T (2, 5)
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Kh(K ) CONTAINS NO TORSION OF ODD

ORDER

Q
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Suppose that Kh(K ;Q) is above.



Kh(K ) CONTAINS NO TORSION OF ODD

ORDER
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Then Kh(K ;Zp) has at least these summands.



Kh(K ) CONTAINS NO TORSION OF ODD
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The free part of Kh(K ) looks as above and recall that all torsion
appears only on the bottom diagonal.



Kh(K ) CONTAINS NO TORSION OF ODD
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Suppose that there exists Zpk in Kh(K ) for some odd p.
Let the pictured Zpk summand be in the maximum i-grading of any pm

torsion in Kh(K ).



Kh(K ) CONTAINS NO TORSION OF ODD
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Then we have the corresponding copy of Zp in Kh(K ,Zp)
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Theorem. Kh(K ,Zp) can be arranged in knight move pairs.



Kh(K ) CONTAINS NO TORSION OF ODD

ORDER
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The universal coefficient theorem implies that Kh(K ;Zp) and Kh(K )
looks like above. Contradiction!



ONLY 2-TORSION

• Khovanov homology of thin links has no odd torsion

• All torsion in Kh(K ) must be of order 2k for some k .

• Next we outline A. Shumakovitch’s unpublished proof that the
Khovanov homology of a homologically thin knot has only
2-torsion.

• Proving that Kh(K ) only contains Z2-torsion and no Z2k amounts
to showing that the Bockstein spectral sequence converges on
the correct (2nd) page

• In order to prove convergence, we analyze relation between the
Bockstein differentials and some new maps on Khovanov
homology.



VERTICAL MAPS ν ON Kh(D;Z2)

Shumakovitch defines maps ν of bidegree (0,2) on C(D;Z2).
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x 1

1

PROPERTIES OF ν

• ν commutes with the Khovanov differential, and thus induces a
map ν∗ : Kh(D;Z2)→ Kh(D;Z2).

• Homology with respect to ν is trivial, and so the induced map ν∗

is an isomorphism on homology level.



PROPERTIES OF THE VERTICAL MAP

• ν∗ is an isomorphism.

• The “vertical” Euler characteristic of Kh(D;Z2) is trivial.
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KNIGHT MOVES

so far...
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SPECTRAL SEQUENCE ASSOCIATED TO

AN EXACT COUPLE

• Given the exact triangle on the left, define d1 = j1 ◦ k1 : E1 → E1.

• d2
1 = j1 ◦ (k1 ◦ j1) ◦ k1 = 0 i.e. d is a differential

E2 = H(E1,d1) and D2 = Im(i1) = Ker(j1)
and maps i2, j2, and k2 can be defined so
that the triangle on the right is exact.

D1 D1

E1

i1

j1k1

• Iterating this process yields a spectral sequence {Er ,dr}r≥1.

• Note If D, E bigraded modules then deg(i) = (−1, 1),
deg(j) = (0, 0), deg(k) = (1, 0), therefore deg(dr) = (r, 1− r)



BOCKSTEIN SPECTRAL SEQUENCE

WHICH EXACT COUPLE TO USE?
• Given Khovanov chain complex (any complex of free Abelian

groups) and a prime p
• Consider the short exact sequence of coefficient rings

0→ Z ×2−−→ Z mod 2−−−−→ Z2 → 0
• It induces a short exact sequence of Khovanov chain complexes

0→ C(D)
×2−−→ C(D)

mod 2−−−−−→ C(D;Z2)→ 0,

• and, in turn, a long exact sequence on homology

· · · → Kh(D)
×2−−→ Kh(D)

mod 2−−−−−→ Kh(D;Z2)
∂−→ Kh(D)→ · · · .

We have an exact couple!



BOCKSTEIN SPECTRAL SEQUENCE

Kh(D) Kh(D)

Kh(D;Z2)

×p

mod p∂

�
β

• Define the Bockstein homomorphism
β : Kh(D;Zp)→ Kh(D;Z2) by β = ∂
mod p.

• β is the connecting homomorphism
induced from
0→ Zp → Zp2 → Zp → 0

• For a finitely generated chain complex, like Khovanov, there
exists a spectral sequence {Br ,br} with B1 = Kh(D;Z2) and
b1 = β that converges to the freeKh(D)⊗ Zp.

• br is induced from 0→ Zpr → Zp2r → Zpr → 0

• B∗r ∼= im(H∗(C;Zpr )
×pr−1

→ H∗(C;Zpr )) ∼= im(Kh∗(C;Zpr )
×pr−1

→
Kh∗(C;Zpr )



MORE ON THE BOCKSTEIN SPECTRAL

SEQUENCE

The Z2-Bockstein spectral sequence satisfies the following.

• The E1 page of the Bockstein spectral sequence is H(G;Z2).

• The E∞ page of the Bockstein spectral sequence is
[Kh(K )/Tor Kh(K )]⊗ Z2.

• If the Bockstein spectral sequence converges at the 2nd page,
then Kh(K ) has no torsion of order 2k for k ≥ 2.

THEOREM
Kh(D) has no 2k torsion if and only if the Bockstein spectral
sequence collapses at the kth page.



BOCKSTEIN EXAMPLE

Goal. Show that the Bockstein spectral sequence collapses at the
first page for homologically thin links.

• H(G) = Za0 ⊕ Za1
2 ⊕ Za2

4 ⊕ · · · ⊕ Zak
2k .

• E1 = Za0
2 ⊕ Za1

2 ⊕ Za1
2 ⊕ Za2

2 ⊕ Za2
2 ⊕ · · · ⊕ Zak

2 ⊕ Zak
2 .

• E2 = Za0
2 ⊕ Za2

2 ⊕ Za2
2 ⊕ · · · ⊕ Zak

2 ⊕ Zak
2 .

• E∞ = Za0
2 .

New new Goal: If β is the Bockstein map on the E1 page, then we
want to show that the rank of β is the number of tetrominoes N in
Kh(G;Z2).



TURNER’S DIFFERENTIAL WITH Z2

COEFFICIENTS

• Define Z2-linear maps

mT : A⊗A → A mT :

{
1⊗ 1 7→ 0 1⊗ x 7→ 0
x ⊗ 1 7→ 0 x ⊗ x 7→ x

∆T : A → A⊗A ∆T :

{
1 7→ 1⊗ 1
x 7→ 0.

• There is a differential dT : C i,j (G;Z2)→ C i+1,j+2(G;Z2).

• It induces a map d∗T : Khi,j (G;Z2)→ H i+1,j+2(G;Z2).



THE TURNER DIFFERENTIAL

• (C(D;Z2),d ,dT) form a double complex, and so there is an
associated spectral sequence.

• dT commutes with the usual Kho-
vanov differential, and so there is
an induced map
d∗Turner : Kh(D;Z2)→ Kh(D;Z2).

• For a knot, the above spectral se-
quence converges to Z2 ⊕ Z2.

• If the homology is thin, the last non-
zero map in the spectral sequence
is d∗T .

ν∗↑

ν∗↑

d∗T

d∗T

β



PUTTING IT ALL TOGETHER

d∗T

ν∗
β

1 ν∗ : Kh(D;Z2)→ Kh(D;Z2) is an isomorphism.
2 The Turner spectral sequence collapses at the first page.
3 d∗T = ν∗ ◦ β + β ◦ ν∗.

1–3 implies that the Bockstein spectral sequence collapses after the
first page.

4 ν∗↑ ◦ d∗T = d∗T ◦ ν∗↑ .
5 On each diagonal, rank d∗T = N.
6 rankβ = N.



TORSION IN KHOVANOV HOMOLOGY OF

HOMOLOGICALLY THIN KNOTS

THEOREM (SHUMAKOVITCH)
If K is homologically thin, then its Khovanov homology only has
2-torsion.

COROLLARY
The Khovanov homology Kh(Kh,Z) of an alternating knot is
determined by its Jones polynomial and signature.

COROLLARY
If K is a nontrivial, homologically thin knot, then its Khovanov
homology contains 2-torsion.

Remark. The second corollary requires Kronheimer-Mrowka’s result
that Khovanov homology detects the unknot.



COMPUTATIONS OF ODD TORSION

• Torus knots (5,6), (5,7), (5,8), and (5,9) have 5-torsion in their
Khovanov homology.

• Przytycki and Sazdanović predicted that the closure K of
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has 5-torsion in its Khovanov homology.

• Shumakovitch (2012) confirmed that K has 5-torsion in its
Khovanov homology by showing that the difference of the
Poincare polynomials of Kh(K ;Z5) and Kh(K ;Z7) is

(t12 + t11)q51 + (t11 + t10)q47.



Kh(K ;Z5)



Kh(K ;Z7)



STILL MYSTERIOUS

• Torsion in reduced homology
• 2-torsion appears first for 13-crossing knots (13n3663)

• the simplest knot having odd torsion in reduced homology is
T (5, 6) and that is Z3

• the simplest knot having odd torsion in unreduced homology is
T(5, 6) which has a copy of Z3 and a copy of Z5

• some knots, e.g. T(5, 6), have odd torsion in unreduced
homology which is not seen in the reduced theory, but the other
way around is also possible: T(7, 8) has an odd torsion group in
reduced that is not seen in unreduced.



QUESTIONS

• How can we generate odd torsion in Kh(L)?

• Torsion of thick knots?

Shumakovitch conjectures that there is only Z2 and Z4 in knots
whose Khovanov homology is supported on 3 diagonals.

• Can we explain the difference in torsion in various versions of
Khovanov homology?

• Exploiting torsion in functorality.

• What does torsion in Kh(L) tell us about the link?

• Can torsion be used to distinguish links that Jones can not?
Distinguish between elements families of links with trivial Jones
polynomial (Eliahou, Kaufman, Thistlethwaite)



Thank you

Challenge: Find knots in Freiburg!
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