13. Übungsblatt zur Vorlesung "Lineare Algebra I" im Wintersemester 2012–2013 bei Prof. Dr. S. Goette

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf Ihre Lösung. Abgabe: Donnerstag, den 07.02.2013 bis 11:00 Uhr in den Briefkästen, Eckerstr. 1, UG.

Aufgabe 1: Es sei $B = (v_1, \ldots, v_n)$ eine Basis von \mathbb{R}^n .

- (a) Zeigen Sie: wenn man B als Matrix mit den Spalten v_1, \ldots, v_n auffasst, dann bilden die Zeilen von B^{-1} gerade die zu B duale Basis des Dualraums ${}^n \mathbb{k} = (\mathbb{k})^n$ (siehe Proposition 2.79).
- (b) Bestimmen Sie die duale Basis zur Basis (v_1, v_2, v_3) des \mathbb{R}^3 mit

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}.$$

Aufgabe 2: Es sei B die obige Basis der \mathbb{R}^3 und $C = (w_1, w_2)$ eine Basis des \mathbb{R}^2 mit

$$w_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad w_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Es sei $F \colon \mathbb{R}^2 \to \mathbb{R}^3$ gegeben durch die Matrix

$$\begin{pmatrix} 2 & -2 \\ 5 & 5 \\ -3 & -4 \end{pmatrix} \in M_{3,2}(\mathbb{R})$$

bezüglich der Standardbasen des \mathbb{R}^3 und \mathbb{R}^2 .

Bestimmen Sie die Abbildungsmatrix von F bezüglich der Basen B und C.

Aufgabe 3: Es sei $\mathbb{k} = \mathbb{Z}/7\mathbb{Z}$. Bilden die Vektoren

$$v_1 = \begin{pmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} \end{pmatrix}, \quad v_2 = \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 3 \end{bmatrix} \end{pmatrix}, \quad v_3 = \begin{pmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix} \end{pmatrix}$$

eine Basis des \mathbb{k}^3 ? Begründen Sie Ihre Antwort.

Aufgabe 4: Es seien $i, j, k \in \mathbb{H}$ wie in Bemerkung 1.73. Bestimmen Sie das Inverse B der Matrix

$$A = \begin{pmatrix} 1+i & 1+j \\ 1-j & 1-i \end{pmatrix} \in M_2(\mathbb{H})$$

mit dem Gauß-Verfahren; beachten Sie, dass bei allen Zeilenumformungen immer von links mit Skalaren aus \mathbb{H} multipliziert wird. Rechnen Sie in \mathbb{H} wie 1.70 und 1.71. Machen Sie hinterher die Probe für $B \cdot A$ oder für $A \cdot B$.