2. ÜBUNGSBLATT

LINEARE ALGEBRA

IM WS 2016/2017 BEI PROF. DR. S. GOETTE

Abgabe Donnerstag, den 3.11.16 vor der Vorlesung in den Briefkästen

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt

Aufgabe 1

Seien M, N endliche Mengen mit #M = m und #N = n.

- (a) Zeigen Sie mit vollständiger Induktion: $\# \text{Abb}(M, N) = n^m$
- (b) Folgern Sie aus a), dass M genau 2^m Teilmengen hat.

Hinweis: Im Fall $M = \emptyset$ oder $N = \emptyset$ überlegen Sie sich, wie viele Teilmengen von $\emptyset = M \times N$ jeweils die nach Definition 1.14 geforderten Eigenschaften haben.

Aufgabe 2

Beweisen Sie die Aussagen von Beispiel 1.35 (3), d.h., zeigen Sie, dass die Relation ' \leq ' aus Definition 1.32 auf \mathbb{N} eine Ordnung definiert. Zeigen Sie dazu für alle $m, n, l \in \mathbb{N}$ die folgenden Aussagen:

- (a) $n \leq n$
- (b) $(m < n \text{ und } n < m) \Rightarrow m = n$
- (c) $(l \le m \text{ und } m \le n) \Rightarrow l \le n$
- (d) $m \le n \text{ oder } n \le m$

Aufgabe 3

Beweisen Sie die Kürzungsregeln in \mathbb{N} aus Satz 1.40 (5), d.h., zeigen Sie für alle $l, m, n \in \mathbb{N}$:

- (a) $l+n=l+m \Rightarrow n=m$
- (b) $l \cdot n = l \cdot m \Rightarrow n = m \text{ oder } l = 0$

Aufgabe 4

Die Fibonacci-Zahlen sind wie folgt definiert: $f_1=1, f_2=1, f_n=f_{n-1}+f_{n-2}$. Zeigen Sie:

- (a) Zwei aufeinander folgende Fibonacci-Zahlen sind teilerfremd.
- (b) Es gilt $f_{n+2} 1 = f_1 + f_2 + \ldots + f_n$
- (c) Die n-te Fibonacci-Zahl f_n genau dann durch 3 teilbar ist, wenn n durch 4 teilbar ist.

Hinweis: Benutzen Sie vollständige Induktion