4. ÜBUNGSBLATT Topologie

IM SS 2018 BEI DR. D. HEIN

Abgabe Montag, den 14.5.18 12 Uhr (also vor der Vorlesung) in den Briefkasten (Nr. 3.1)

Bitte schreiben Sie Ihren Vor- und Nachnamen auf Ihr Blatt

Aufgabe 1

Seien X, Y topologische Räume, $A \subseteq X$ abgeschlossen und $f: A \to Y$ eine Abbildung. Zeigen Sie, dass dann die folgenden Bedingungen für $a \in A$ äquivalent sind:

- (a) f ist stetig in a.
- (b) Es gilt $f(x) \to f(a)$ für $x \to a$.

Aufgabe 2

- (a) Seien $B \subseteq A \subseteq (X, \mathcal{O})$. Bezeichne mit \mathcal{O}_A und \mathcal{O}_B die Topologien auf A, B als Unterräume von X und sei $(\mathcal{O}_A)_B$ die Unterraumtopologie von B als Unterraum von A. Zeigen Sie, dass $\mathcal{O}_B = (\mathcal{O}_A)_B$ gilt.
- (b) Sei nun $X = \bigcup_{i=1}^n A_i$ für $A_i \subseteq X$ abgeschlossen und $f: X \to Y$. Zeigen Sie, dass f genau dann stetig ist, wenn alle Einschränkungen $f_i := f|_{A_i} : A_i \to Y$ stetig sind, wobei die A_i die Unterraumtopologie tragen.

Aufgabe 3

Sei $Z = X \sqcup Y$ mit $X \cap Y = \emptyset$ und W ein weiterer topologischer Raum. Zeigen Sie, dass eine Abbildung $f \colon Z \to W$ genau dann stetig ist, wenn beide Einschränkungen $f|_X$ und $f|_Y$ stetig sind.

Aufgabe 4

Mit Hilfe des Wohlordnungssatzes kann man eine überabzählbare, wohlgeordnete Menge Ω konstruieren, die folgende Eigenschaften hat:

- (i) Es gibt ein größtes Element $\omega_1 \in \Omega$.
- (ii) Für alle $\alpha < \omega_1$ ist die Menge $\{\beta \in \Omega \mid \beta \leq \alpha\}$ abzählbar.

Wir bezeichnen das kleinste Element von Ω mit 1 und definieren die Ordnungstopologie auf Ω durch die Subbasis von Mengen der Form

$$[1, \alpha) = \{ \beta \in \Omega \mid 1 \leq \beta < \alpha \} \text{ oder } (\alpha, \omega_1) = \{ \beta \in \Omega \mid \alpha < \beta \leq \omega_1 \}.$$

Zeigen Sie:

- (a) ω_1 ist Randpunkt der Menge $\Omega_0 = \Omega \setminus {\{\omega_1\}}$.
- (b) Es gibt keine Folge in Ω_0 , die gegen ω_1 konvergiert.
- (c) Es gibt eine unstetige Funktion $f: \Omega \to \mathbb{R}$, die folgenstetig ist.