3. ÜBUNGSBLATT

Symplektische Geometrie

IM SS 2016 BEI DR. DORIS HEIN

Abgabe Dienstag, den 31.5.16 vor Beginn der Übung Bitte schreiben Sie Ihren Vor- und Nachnamen auf Ihr Blatt

Aufgabe 1

Betrachten Sie den \mathbb{R}^4 mit Koordinaten (x_1,y_1,x_2,y_2) und die 2-Form

$$\omega = dy \wedge dx = dy_1 \wedge dx_1 + dy_2 \wedge dx_2.$$

- (a) Zeigen Sie, dass ω eine symplektische Form ist, also geschlossen und (punktweise) nicht entartet.
- (b) Berechnen Sie $\omega \wedge \omega$ und zeigen Sie, dass Sie eine Volumenform des \mathbb{R}^4 erhalten, also dass diese Form nirgends verschwindet.
- (c) Zeigen Sie, dass eine geschlossene 2-Form auf einer 2n-dimensionalen Mannigfaltigkeit genau dann eine symplektische Form ist, wenn ω^n eine Volumenform ist.

Aufgabe 2

Zeigen Sie, dass die 2-Form $\omega_p(v,w) = \langle p, v \times w \rangle$ eine symplektische Form auf S^2 definiert, wobei \times das Kreuzprodukt im \mathbb{R}^3 ist.

Aufgabe 3

Zeigen Sie, dass magnetische Formen auf dem Kotangentialbündel $M=T^*B$ symplektisch sind, d.h., dass für jede geschlossene 2-Form β auf B die Form $\omega_{\beta}=\omega_0+\pi^*\beta$ auf M symplektisch ist.

Aufgabe 4

- (a) Sei α eine Volumenform auf S^n . Zeigen Sie: α ist nicht exakt. Hinweis: Benutzen Sie den Integralsatz von Stokes und die Kohomologie von S^n .
- (b) Folgern Sie aus a) und Aufgabe 1, dass S^{2n} genau dann eine symplektische Form besitzt, wenn n=1 gilt.