8. ÜBUNGSBLATT

DIFFERENTIALGEOMETRIE I

IM WS 2017/18 BEI PROF. DR. S. GOETTE

Abgabe Donnerstag, den 14.12.17 10 Uhr (also vor der Vorlesung) in den Briefkasten (Nr. 3.1)

Bitte schreiben Sie Ihren Namen auf Ihre Abgabe

Aufgabe 1

Seien M eine Riemannsche Mannigfaltigkeit, $p, q \in M$ und $\gamma \colon [a, b] \to M$ eine (nicht notwendig reguläre oder injektive) Kurve mit $\gamma(a) = p$ und $\gamma(b) = q$ sowie $L(\gamma) = d(p, q)$. Zeigen Sie, dass dann eine Geodätische c und eine monoton steigende Funktion $f \colon [a, b] \to \mathbb{R}$ existieren, so dass $\gamma(t) = c(f(t))$.

Aufgabe 2

Zeigen Sie die Vollständigkeit von zwei der drei folgenden Riemannschen Mannigfaltigkeiten:

- (a) des euklidischen Raums ($\mathbb{R}^n, g^{\text{eukl}}$),
- (b) der Sphäre (S^n, g^{sph}) und
- (c) des hyperbolischen Raums (H^n, q^{hyp}) .

Aufgabe 3

Sei M eine \mathbb{C}^k -Mannigfaltigkeit und $X \in \mathfrak{X}^{k-1}(M)$ mit $k \geq 2$.

- (a) Beweisen Sie die Existenz einer Teilmenge $V \subset M \times \mathbb{R}$ und einer Abbildung $\Phi_X \in C^{k-1}(V;M)$ mit $(p,t) \mapsto \Phi_X^t(p)$ für alle $(p,t) \in V$, so dass
 - (i) Für alle $p \in M$ ist $\{t \mid (p,t) \in V\}$ ein Intervall I_p mit $0 \in I_p$ und es gilt $\Phi_X^0(p) = p$ für alle $p \in M$,
 - (ii) $\frac{\partial}{\partial t}\Phi_X^t(p) = X_{\Phi_X^t(p)}$ für alle $(p,t) \in V$, und
 - (iii) wenn $W \subset M \times \mathbb{R}$ und $\Psi : W \to M$ ebenfalls (i) und (ii) erfüllen, dann gilt $W \subset V$ und $\Psi = \Phi_X|_W$.
- (b) Zeigen Sie: Wenn $(p, s) \in V$ und $(\Phi_X^s(p), t) \in V$, dann auch $(p, s + t) \in V$ und $\Phi_X^t(\Phi_X^s(p)) = \Phi_X^{s+t}(p)$.

Hinweis: Benutzen Sie die Eindeutigkeitsaussage im Satz von Picard-Lindelöf.

Aufgabe 4

Seien M, X wie in Aufgabe 3. Zeigen Sie: Wenn M kompakt ist, gilt $V = M \times \mathbb{R}$.

Hinweis: Argumentieren Sie wie in Bemerkung 1.73 (2).