5. ÜBUNGSBLATT

ELEMENTARGEOMETRIE

IM SS 2015 BEI PROF. DR. S. GOETTE

Abgabe Donnerstag, den 11.6.15 18 Uhr in die Briefkästen Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt

Aufgabe 1 (1+1+2 Punkte)

Für einen Punkt $p \neq 0$ im Inneren des Einheitskreises ist die folgende Konstruktion mit Lineal und Zirkel durchführbar:

- Konstruktion der Geraden g durch 0 und p.
- ullet Konstruktion der Senkrechten h zu g durch p.
- ullet Konstruktion der Tangenten an den Einheitskreis an den Schnittpunkten von h mit dem Einheitskreis.

Wir bezeichnen den Schnittpunkt der beiden so konstruierten Tangenten mit p'.

- (a) Zeigen Sie, dass diese Konstruktion die Inversion am Kreis beschreibt. Also: p und p' liegen auf einer Geraden durch 0 und es gilt $|p| \cdot |p'| = 1$.
- (b) Seien p, q zwei verschiedene Punkte im Inneren des Einheitskreises mit $p \neq 0$. Beschreiben Sie die Konstruktion einer Geraden oder eines Kreises durch p, p', q.
- (c) Zeigen Sie, dass die Konstruktion in b) die hyperbolische Gerade durch p und q liefert. Zeigen Sie weiterhin, dass für $q \neq 0$ dann auch q' auf diesem Kreis oder dieser Geraden liegt, wobei q' aus q wie oben konstruiert ist.

Aufgabe 2 (1+1+2 Punkte)

Sei $A = \begin{pmatrix} \frac{a}{b} & \frac{b}{a} \end{pmatrix} \in SU(1,1)$, also $|a|^2 - |b|^2 = 1$. Zeigen Sie:

- (a) Gilt |Re a| = 1, so ist $\varphi_A = \text{id}_P$ oder φ_A besitzt genau einen Fixpunkt in $\bar{P} = P \cup \partial P$ und dieser liegt auf dem Rand ∂P .
- (b) Gilt |Re a| < 1, so besitzt φ_A genau einen Fixpunkt in \bar{P} und dieser liegt in P.
- (c) Gilt |Re a| > 1, so besitzt φ_A genau zwei Fixpunkte in \bar{P} und diese liegen beide auf dem Rand ∂P . In diesem Fall hält φ_A die hyperbolische Gerade mit den beiden Fixpunkten als Endpunkten als Menge fest.

Hinweis: Betrachten Sie die Fixpunktgleichung $\varphi_A(z) = z$, insbesondere die möglichen Fälle für den Wert von $2\bar{b}z$.