Übungsaufgaben zur Vorlesung "Analytische Zahlentheorie"

Blatt 3

Definition. Sei $N \geq 1$. Ein *Dirichlet-Charakter modulo* N ist eine Abbildung $\chi \colon \mathbb{Z} \to \mathbb{C}$ mit den folgenden Eigenschaften:

- (a) Für alle $n \in \mathbb{Z}$ ist $\chi(n) = 0$ genau dann, wenn n und N nicht teilerfremd sind,
- (b) χ ist vollständig multiplikativ, d.h. für alle $n, m \in \mathbb{Z}$ gilt $\chi(nm) = \chi(n)\chi(m)$,
- (c) χ ist N-periodisch, d.h. für alle $n \in \mathbb{Z}$ gilt $\chi(n+N) = \chi(n)$.

Aufgabe 1: (3+3 Punkte) Zeigen Sie, dass es sich bei den folgenden Abbildungen $\mathbb{Z} \to \mathbb{C}$ um Dirichlet-Charaktere modulo N handelt:

- (1) N beliebig, $\chi_0(n) = \begin{cases} 1, & \text{falls } \operatorname{ggT}(n, N) = 1, \\ 0, & \text{sonst.} \end{cases}$ Die Abbildung χ_0 heißt $Hauptcharakter\ modulo\ N$.
- (2) Sei N = p eine Primzahl und

 $\left(\frac{n}{p}\right) := \begin{cases} 1, & \text{falls } n \not\equiv 0 \pmod{p} \text{ und } n \text{ ein Quadrat modulo } p \text{ ist} \\ -1, & \text{falls } n \text{ ein Nichtquadrat modulo } p \text{ ist} \\ 0, & \text{falls } n \equiv 0 \pmod{p}. \end{cases}$

Die dadurch definierte Abbildung $n \mapsto \left(\frac{n}{p}\right)$ heißt Legendre-Symbol.

Aufgabe 2: (3+3 Punkte)

 $\overline{\text{Sei }\chi \text{ ein D}}$ irichlet-Charakter modulo N. Zeigen Sie, dass

$$L(s,\chi) := \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

auf der Halbebene $\sigma = \text{Re}(s) > 1$

- (1) holomorph ist,
- (2) gleich dem Produkt

$$\prod_{p \text{ prim}} \frac{1}{1 - \chi(p)p^{-s}}$$

ist.

Aufgabe 3: (4 Punkte)

Für $0 < a \le 1$ definiere man

$$\zeta(s,a) := \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}.$$

Sei χ ein Dirichlet-Charakter modulo N. Zeigen Sie, dass für $\sigma=\mathrm{Re}(s)>1$ gilt:

$$L(s,\chi) = N^{-s} \cdot \sum_{r=1}^{N} \chi(r) \zeta\left(s, \frac{r}{N}\right).$$

Abgabedetails: Am Mittwoch, 10. Mai 2023, Anfang der Übung.

Generelle Informationen:

- Mathematische Folgerungen sollen vollständig begründet werden.
- Übungsblätter können maximal **zu zweit** abgegeben werden. Abgabe zu zweit wird empfohlen.