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Abstract. We consider the motion of a generalized Newtonian fluid, where
the extra stress tensor is induced by a potential with p–structure (p = 2
corresponds to the Newtonian case). We focus on the three dimensional case
with periodic boundary conditions and extend the existence result for strong
solutions for small times from p > 5

3
(see [16]) to p > 7

5
. Moreover, for

7
5

< p ≤ 2 we improve the regularity of the velocity field and show that

u ∈ C([0, T ],W
1,6(p−1)−ε

div (Ω)) for all ε > 0. Within this class of regularity,

we prove uniqueness for all p > 7
5
. We generalize these results to the case

when p is space and time dependent and to the system governing the flow of
electrorheological fluids as long as 7

5
< inf p(t, x) ≤ sup p(t, x) ≤ 2 .

1. Introduction

In this paper we show existence of strong solutions to the following system
describing the motion of generalized Newtonian fluids1:

∂tu− div(S(Du)) + (u · ∇)u + ∇π = f , on I × Ω,

div u = 0, on I × Ω,

u(0) = u0, on Ω.

(1)

We consider the three dimensional space periodic case, i.e. let Ω be the three
dimensional torus and let I = [0, T ] with T > 0. The functions u, π, and f

denote the velocity, the pressure, and the external force. The function u0 is a
given initial value. By Du we denote the symmetric part of the gradient ∇u,
i.e. Du = 1

2 (∇u + (∇u)>). We assume that the extra stress S is induced by a
p–potential F as defined below. Standard examples for S are

S(Du) ≡ (1 + |Du|2)
p−2
2 Du, S(Du) ≡ (1 + |Du|)p−2 Du,

with 1 < p < ∞. We compensate the missing boundary conditions by restricting the
solutions to ones with mean value zero. This ensures that the Poincaré inequality
remains valid.

Mathematical results for the system (1) can be found in [13, 15, 19, 2, 16, 18, 4].2

We want to mention that the existence of global strong solutions to the problem
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2In the monograph [16] the reader can find a detailed discussion of the problem (cf. [8, 23, 10,

11, 7, 17] for more recent results).
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(1), i.e. u∈L∞(I, Vp) ∩ L2(I, W 2,2(Ω)), ∂tu∈L2(I, L2(Ω)), satisfies for almost all
t ∈ I,

〈∂tu, ϕ〉 + 〈S(Du),Dϕ〉 + 〈u · ∇u, ϕ〉 = 〈f , ϕ〉 ∀ϕ ∈ Vp,(2)

is established for p ≥ 3d+2
d+2 (cf. [16, 19, 2]), where d is the dimension of Ω. The

existence of a local in time strong solution for arbitrary data and the existence of
a global strong solution for small data is proved in the case p > 3d−4

d
(cf. [18, 16]).

Moreover, in [16] it has been shown that for p > 5
3 there exists strong solutions for

short time and large data

‖∇u‖L∞(I,L2(Ω)) + ‖∂tu‖L2(I,L2(Ω)) ≤ C,

‖IΦ(u)‖L1(I) ≤ C,
(3)

where IΦ(u) ≈
∫
Ω
(1 + |Du|)p−2|∇2u|2 dx. It has been shown in [20] that this

solution further satisfies

‖∂tu‖L∞(I,L2(Ω)) + ‖JΦ(u)‖L1(I) ≤ C,(4)

where JΦ(u) ≈
∫
Ω(1 + |Du|)p−2|∇∂tu|

2 dx.

In this paper3 we prove the short time existence of strong solutions for large
data for all 7

5 < p ≤ 2. Moreover, we show that the solution satisfies additionally
to (3) and (4)

‖IΦ(u)‖
L

5p−6
2−p (I)

≤ C.(5)

We refer to theorem 17 for the precise statement of this result. From (3) and

(4) we deduce that u ∈ C([0, T ], W
1,6(p−1)−ε

div (Ω)) for all ε > 0, especially u ∈

C(I, W
1, 12

5

div (Ω)). We will show that every weak solution v ∈ C(I, W
1, 12

5

div (Ω)) of (1)
satisfies v = u, especially u is unique within its class of regularity (see theorem
19).

System (1) is usually studied under the assumption that p is constant, with
1 < p < ∞. Motivated by the model for the motion of electrorheological fluids in
[21, 22] which has been further studied in [25], we are also interested in the case,
where p is a function in space and time. Electrorheological fluids are a special type
of smart fluids which change their material properties due to the application of an
electric field. In the model in [22] p is not a constant but a function of the electric
field E, i.e. p = p(|E|2). The electric field itself is a solution to the quasi–static
Maxwell equations and is not influenced by the motion of the fluid. Therefore it
is possible to consider (1) for a given function p : Ω × I → (1,∞). In this case we
speak of a time and space dependent potential. Due to the nature of the Maxwell
equations it is reasonable to consider smooth p. We define p− := infΩ×I p and
p+ := supΩ×I p. In [24] it has been proven that there exists a strong solution to (1)

for large time and data as long as p ∈ W 1,∞(I × Ω) and4

11
5 < p− ≤ p+ < p− + 4

3 .

The extra condition p+ < p− + 4
3 is due to the use of classical Sobolev spaces. The

reason is that the energy
∫
Ω|Du|p dx cannot be fully expressed in terms of classical

Sobolev spaces if p is non–constant. In that case the generalized Sobolev spaces

3This paper is based on the PhD thesis [4] of L. Diening
4The case of Dirichlet boundary conditions is treated in [25].
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W k,p(·) provide the right setting. See [12, 5, 25] and the references therein for a
definition of these spaces and applications to fluid mechanics.

In section 8 we generalize our results on short time existence to the case, where
p is non–constant, i.e. we prove short time existence of strong solutions for large
data as long as 7

5 < p− ≤ p+ ≤ 2. Moreover, we show that the solution satisfies (3)
and (4), while (5) will be replaced by

‖IΦ(u)‖
L

5p−−6

2−p− (I)

≤ C.

See theorem 21 and corollary 22 for the precise statement. As before we deduce
that the solution is unique within its class of regularity (cf. theorem 23). Finally we
also extend these results to the system governing the motion of electrorheological
fluids.

2. The Potential and the Extra Stress

We assumte that the extra stress tensor S is induced by a p–potential. In this
section we give a definition of a p–potential and derive basic properties of it. We
will consider only the case p constant. The case p non–constant will be covered by
section 8.

Since we are dealing with functions from Ω × R
n×n to R, we will distinguish

the partial derivatives by ∂i and ∂jk, a single index means a partial derivative
with respect to the i-th space coordinate, while a double index represents a partial
derivative with respect to the (j, k)-component of the underlying space of n × n-
matrices. By ∇ we denote the space gradient, while ∇n×n denotes the matrix
consisting of the partial derivatives with respect to the space of matrices. In a few
cases we use di instead of ∂i to indicate a total derivative. Note that by Bsym we
denote the symmetric part of a matrix B ∈ R

n×n, i.e. Bsym = 1
2 (B+B>). Further

let R
n×n
sym be the subspace of R

n×n consisting of the symmetric matrices. Moreover
we use C as a constant which is generic but does not depend on the ellipticity
constants. For the notation of the function spaces see section 4. We will assume
that 1 < p ≤ 2 throughout the whole paper.

Definition 1. Let 1 < p ≤ 2 and let F : R
≥0 → R

≥0 be a convex function,
which is C2 on R

≥0, such that F (0) = 0, F ′(0) = 0. Assume that the induced
function Φ : R

n×n → R
≥0, defined through Φ(B) = F (|Bsym|), satisfies

∑

jklm

(∂jk∂lmΦ)(B)CjkClm ≥ γ1(1 + |Bsym|2)
p−2
2 |Csym|2,(6)

∣∣(∇2
n×nΦ)(B)

∣∣ ≤ γ2(1 + |Bsym|2)
p−2
2(7)

for all B,C ∈ R
n×n with constants γ1, γ2 > 0. Such a function F , resp. Φ, is

called a p-potential and the corresponding constants γ1, γ2 are called the ellipticity
constants of F , resp. Φ.

We define the extra stress S induced by F , resp. Φ, by

S(B) := ∇n×nΦ(B) = F ′(|Bsym|) B
sym

|Bsym|

for all B ∈ R
n×n\{0}. We will see in remark 2 that S can be continuously extended

by S(0) = 0. Note that S(B) does only depend on the symmetric part of B.
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Standard examples are

F1(s) =

s∫

0

(1 + a2)
p−2
2 a da and F2(s) =

s∫

0

(1 + a)p−2a da.

Remark 2. Observe that for all B ∈ R
n×n \ {0}

(∂jkΦ)(B) = F ′(|Bsym|)
B

sym
jk

|Bsym| ,

(∂jk∂lmΦ)(B) = F ′(|Bsym|)
(

δ
sym
jk,lm

|Bsym|−
B

sym
jk

B
sym
lm

|Bsym|3

)
+ F ′′(|Bsym|)

B
sym
jk

|Bsym|

B
sym
lm

|Bsym| ,

where δsym
jk,lm := 1

2 (δjlδkm + δjmδkl). Hence
∑

jklm

(∂jk∂lmΦ)(B)BjkBlm = F ′′(|Bsym|)|Bsym|2.

So by (6) and (7) we conclude that for all B ∈ R
n×n \ {0}

γ1(1 + |Bsym|2)
p−2
2 ≤ F ′′(|Bsym|) ≤ γ2(1 + |Bsym|2)

p−2
2 .(8)

Since F ′′ ∈ C2(R≥0), this estimate also holds for B = 0. From the formula above
for (∂jkΦ)(B), the continuity of F ′ at zero with F ′(0) = 0, and the boundedness of
Bsym

jk /|Bsym| in R
n×n \ {0}, we deduce

lim
|B|→0

Sjk(B) = lim
|B|→0

(∂jkΦ)(B) = 0.(9)

Remark 3. Let B,C ∈ R
n×n. Due to Φ(B) = F (|Bsym|), we have Φ(B) =

Φ(Bsym), thus the ∂jk∂lmΦ are symmetric in j, k and l, m and (j, k), (l, m). This
implies that

∑

jklm

(∂jk∂lmΦ)(B)CjkClm =
∑

jklm

(∂jk∂lmΦ)(Bsym)Csym
jk Csym

lm ,(10)

(∇n×nΦ)(B) = (∇n×nΦ)(Bsym),(11)

(∇2
n×nΦ)(B) = (∇2

n×nΦ)(Bsym).(12)

Thus it suffices to verify (6), (7) for all symmetric matrices. Since later we will
mostly deal with symmetric matrices, we will in some cases leave out the sym-
metrization of the matrices, i.e. we will use B instead of Bsym and restrict the
admitted matrices to the symmetric ones.

As in [16], one can deduce from (6) and (7) the following properties of S.

Theorem 4. There exist constants c1, c2 > 0 independent of γ1 and γ2 such that
for all B,C ∈ R

n×n
sym there holds

S(0) = 0,(13)

∑

ij

(Sij(B)−Sij(C))(Bij−Cij) ≥ c1γ1(1 + |B|2 + |C|2)
p−2
2 |B−C|2,

∑

ij

Sij(B)Bij ≥ c1 γ1(1 + |B|2)
p−2
2 |B|2,(14)

|S(B) − S(C)| ≤ c2 γ2(1 + |B|2 + |C|2)
p−2
2 |B−C|,

|S(B)| ≤ c2 γ2(1 + |B|2)
p−2
2 |B|.

(15)
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The same inequalities hold true for all B,C ∈ R
n×n if B and C is replaced on the

right-hand side by Bsym and Csym.

3. Special Energies

Later in our a priori estimates we will encounter the following two important
expressions

IΦ(t,u) :=
〈∑

r

∑

jkαβ

(∂αβ∂jkΦ)
(
Du(t)

)
∂rDαβu(t), ∂rDjku(t)

〉
,(16)

JΦ(t,u) :=
〈 ∑

jkαβ

(∂αβ∂jkΦ)
(
Du(t)

)
∂tDαβu(t), ∂tDjku(t)

〉
,(17)

where Φ is a p–potential and u denotes a sufficiently smooth function over the space
time cylinder. The brackets 〈·, ·〉 denote integration over the space domain Ω. These
two expressions will arise when we are going to test the equation of motion with
−∆u, resp. “∂2

t u”. Since IΦ and JΦ are very similar, it is useful to introduce
another functor GΦ by

GΦ(t,w,v) :=
〈 ∑

jkαβ

(∂αβ∂jkΦ)(Dw(t))Dαβv(t), Djkv(t)
〉
,(18)

where w : I × Ω → R
d and v : I × Ω → R

d (or v : I × Ω → R
d×d) are sufficiently

smooth functions. Mostly we will simply write IΦ(u), JΦ(u), and GΦ(w,v) instead
IΦ(t,u), JΦ(t,u), and GΦ(t,w,v). We have

IΦ(u) = GΦ(u, ∇u), JΦ(u) = GΦ(u, ∂tu).(19)

Due to the properties of Φ we estimate

GΦ(w,v) ≥ γ1

∫

Ω

(1 + |Dw|2)
p−2
2 |Dv|2 dx.(20)

The expression (1+ |Dw|2)
1
2 will appear quite often in all the chapters, so it is very

useful to introduce the shortcut

D̃w := (1 + |Dw|2)
1
2 .(21)

As a consequence

IΦ(u) ≥ C γ1

∫

Ω

(D̃u)p−2|∇Du|2 dx,(22)

JΦ(u) ≥ C γ1

∫

Ω

(D̃u)p−2|∂tDu|2 dx.(23)

Note that

∂j∂kum = ∂jDkmu + ∂kDmju − ∂mDjku.(24)

which implies |∇2u|≤3|∇Du| ≤ 6 |∇2u|. Thus, |∇Du| can always be replaced by
|∇2u| (and vice versa) by increasing the multiplicative constant.

Closely connected to the quantities IΦ(u) and JΦ(u) is the function (D̃u)
p
2 ,

which will be important when examining the regularity of solutions.
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Lemma 5. Let Φ be a p–potential. Then there exists C > 0, such that for all
(sufficiently smooth) u and almost all times t ∈ I there holds

γ1

∥∥∥∇

((
D̃u(t)

) p
2

)∥∥∥
2

2
≤ C IΦ(t,u).(25)

γ1

∥∥∥∂t

((
D̃u(t)

) p
2

)∥∥∥
2

2
≤ C JΦ(t,u).(26)

Proof. Observe that

∇
(
(D̃u)

p
2

)
=

∑

jk

p
2 (D̃u)

p−4
2 (Djku) (∇Djku).(27)

Raising this to the power of two and integrating over Ω proves the first inequality.
If we replace ∇ in the calculations above by ∂t, we get the result for JΦ(u). �

In the following we will derive more useful estimates for GΦ(w,v), IΦ(u) and
JΦ(u):

Lemma 6. Let Φ be a p–potential. Then for all (sufficiently smooth) u and almost
all times t ∈ I there holds

γ1‖∇
2u(t)‖p

p ≤ C IΦ(t,u) + γ1‖D̃u(t)‖p
p.(28)

γ1‖∂tDu(t)‖p
p ≤ C JΦ(t,u) + γ1‖D̃u(t)‖p

p.(29)

Proof. Note that for all q ∈ [1, 2], a ≥ 0, b ≥ 1 there holds

aq ≤ a2bq−2 + bq.(30)

Indeed, there is nothing to prove if q = 2, so let 1 ≤ q < 2. In this case 1 < 2
q

< ∞,

and Young’s inequality gives

aq = (a2bq−2)
q
2 (b

(2−q)q
2 )

Young

≤ a2bq−2 + bq.

Now (30) implies

|∇2u|p ≤ (D̃u)p−2|∇2u|2 + (D̃u)p.

Since in general |∇2u| ≤ 3|∇Du| (see (24)) we deduce

‖∇2u‖p
p ≤

∫

Ω

(D̃u)p−2|∇2u|2 dx + ‖D̃u‖p
p

≤ 9

∫

Ω

(D̃u)p−2|∇Du|2 dx + ‖D̃u‖p
p

(22)

≤
C

γ1
IΦ(u) + ‖D̃u‖p

p.

The estimate for ∂tDu follows analogously. �

Lemma 7. Let Φ be a p–potential. Then for all (sufficiently smooth) u and v, for
all 1 ≤ q ≤ 2, and almost every t ∈ I there holds:

‖Dv(t)‖q ≤ C
γ1

(
1
γ1
GΦ(t,w,v)

) 1
2 ‖(D̃w(t))

2−p
2 ‖ 2q

2−q
,(31)

where 2q
2−q

= ∞ for q = 2.
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Proof. Observe that 1 ≤ 2
q

< ∞ and 1 < ( 2
q
)′ = 2

2−q
≤ ∞. Further for 1 ≤ q < 2

‖Dv‖q
q =

∫

Ω

(
(D̃w)p−2|Dv|2

) q
2

(D̃w)
(2−p)q

2 dx

≤




∫

Ω

(D̃w)p−2|Dv|2dx





q
2 ∥∥(D̃w)

(2−p)q
2

∥∥
2

2−q

=




∫

Ω

(D̃w)p−2|Dv|2dx




q
2 ∥∥(D̃w)

(2−p)
2

∥∥q
2q

2−q

.

This and (20) prove the lemma for q < 2. The case q = 2 is similar. �

Note that this lemma is applicable to IΦ(u) = GΦ(u, ∇u) and as well to JΦ(u) =
GΦ(u, ∂tu). Analogously we have

Lemma 8. Let Φ be a p–potential. Then for all (sufficiently smooth) u and v and
for all 1 ≤ q ≤ 2 there holds:

‖D(u−v)‖q ≤ C
〈
S(Du)−S(Dv),D(u−v)

〉 1
2 ‖(D̃u)

2−p
2 + (D̃v)

2−p
2 ‖ 2q

2−q
,

where 2q
2−q

= ∞ for q = 2.

Proof. Analogously to the proof of lemma 7

‖D(u− v)‖q
q =

∫

Ω

(
(D̃u + D̃v)p−2|D(u − v)|2

) q
2

(D̃u + D̃v)
(2−p)q

2 dx

≤




∫

Ω

(D̃u+D̃v)p−2|D(u−v)|2dx





q
2 ∥∥(D̃u+D̃v)

(2−p)q
2

∥∥
2

2−q

(14)

≤ C
γ1

〈
S(Du)−S(Dv),D(u−v)

〉 q
2
∥∥(D̃u)

(2−p)
2 +(D̃v)

(2−p)
2

∥∥q
2q

2−q

.

This proves the lemma for q < 2. The case q = 2 is similar. �

Note that the following estimates for IΦ and JΦ will depend on the dimension
of the underlying space, which is in our case three dimensional.

Lemma 9. For all (sufficiently smooth) u and almost every t ∈ I there holds

γ1‖D̃u(t)‖p
3p ≤ C

(
IΦ(t,u) + ‖D̃u(t)‖p

p

)
.(32)

Proof. By lemma 5 and the embedding W 1,2(Ω) ↪→ L6(Ω) there holds

γ1‖D̃u‖p
3p = γ1‖(D̃u)

p
2 ‖2

6 ≤ C γ1(‖∇((D̃u)
p
2 )‖2

2 + ‖(D̃u)
p
2 ‖2

2)

≤ C
(
IΦ(u) + γ1‖D̃u‖p

p

)
.

This proves the lemma. �
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Lemma 10. For all (sufficiently smooth) u with 〈u, 1〉 = 0 and almost every t ∈ I
there holds

‖u(t)‖p

2, 3p
p+1

≤ C (IΦ(t,u) + 1),(33)

‖∂tu(t)‖p

1, 3p
p+1

≤ C JΦ(t,u)
p
2

(
IΦ(t,u) + 1

) 2−p
2 ,(34)

≤ C(JΦ(t,u) + IΦ(t,u) + 1).(35)

Proof. From lemma 7 we deduce

‖∇Du‖ 3p
p+1

≤ C IΦ(u)
1
2 ‖(D̃u)

2−p
2 ‖ 6p

2−p

≤ C IΦ(u)
1
2 ‖D̃u‖

2−p
2

3p

≤ C IΦ(u)
1
2

(
1 + ‖Du‖3p

) 2−p
2

≤ C IΦ(u)
1
2

(
1 + C ‖∇Du‖ 3p

p+1

) 2−p
2 , since 〈u, 1〉 = 0.

This implies

‖∇Du‖p
3p

p+1

≤ C (IΦ(u) + 1).

Since |∇2u| ≤ 3 |∇Du| (see (24)) and 〈u, 1〉 = 0, we get

‖u‖p

2, 3p
p+1

≤ C (IΦ(u) + 1).

Analogously we can use lemma 7 to get

‖∂tDu‖ 3p
p+1

≤ C JΦ(u)
1
2 ‖(D̃u)

2−p
2 ‖ 6p

2−p

≤ C JΦ(u)
1
2

(
1 + C ‖∇Du‖ 3p

p+1

) 2−p
2 , since 〈u, 1〉 = 0

(33)

≤ C JΦ(u)
1
2

(
1 + C (IΦ(u) + 1)

1
p

) 2−p
2

≤ C JΦ(u)
1
2

(
1 + IΦ(u)

) 2−p
2p .

Now 〈u, 1〉 = 0 and Korn’s inequality imply

‖∂tu‖1, 3p
p+1

≤ C ‖∂tDu‖ 3p
p+1

≤ C JΦ(u)
1
2

(
1 + IΦ(u)

) 2−p
2p ,

which proves (34). The rest is an application of Young’s inequality. �

4. Galerkin Approximation - The Case 3
2 < p ≤ 2

Let us introduce the spaces, which we will need later. As before let Ω be the three
dimensional torus. By (Lq(Ω), ‖·‖q), resp. (W k,q(Ω), ‖·‖k,q), we denote the classical
Lebesgue and Sobolev spaces. For a Banach space X we denote by Lq([0, T ], X)
the Bochner space with q–integrability and values in X . We will also make use of
the space C(I, X) of continuous functions with values in X .

Due to the constraint div u = 0 of incompressibility we introduce spaces of
divergence-free functions. For 1 < q < ∞ and k ∈ N0 let

V := {ϕ ∈ C∞
per(Ω) : div ϕ = 0, 〈ϕ, 1〉 = 0},

Lq
div(Ω) := (V , ‖·‖q),

W k,q
div (Ω) := (V , ‖·‖k,q),
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where (V , ‖·‖) is the closure of V with respect to the given norm and 〈f, g〉 ≡∫
Ω f g dx is the scalar product with respect to the space.

In order to prove theorem 17 we will use a Galerkin approximation and derive
some a priori estimates for the approximative solutions uN . In section 6 we will
pass to the limit N → ∞ showing the existence of a desired solution u of system
(1).

Let {ωr} denote the set consisting of the eigenvectors of the Stokes operator de-
noted by A. Let λr be the corresponding eigenvalues and XN = span{ω1, . . . , ωN}.

Note that 〈ωr, 1〉 = 0. Define P Nu =
∑N

r=1〈u, ωr〉ω
r. Then

λr〈ω
r,uN 〉 = 〈A ω

r,uN 〉 = 〈∇ω
r, ∇uN 〉(36)

and P N : W s,2 → (XN , ‖·‖s,2) are uniformly continuous for all 0 ≤ s ≤ 3. (See [16,
24] for a proof.)

Let us define uN (t, x) =
∑N

r=1 cN
r (t)ωr(x) and fN = P N f , where the coefficients

cN
r (t) solve the Galerkin system (for all 1 ≤ r ≤ N)

〈
∂tu

N , ωr
〉

+
〈
S(DuN ),Dω

r
〉

+
〈
(uN · ∇)uN , ωr

〉
= 〈fN , ωr〉,

uN (0) = P Nu0.
(37)

We will show that this Galerkin approximation has a short time solution uN , which
will converge to a solution of (1). Since the matrix 〈ωj , ωk〉 with j, k = 1, . . . , N
is positive definite, the Galerkin system (37) can be rewritten as a system of ordi-
nary differential equations. This in turn fulfills the Carathéodory conditions and
is therefore solvable locally in time, i.e. on a small time interval I∗ = [0, T ∗). In
theorem 17 we assume that f ∈ L∞(I, W 1,2(Ω)) and ∂tf ∈ L2(I, L2(Ω)) and thus
fN = P N f ∈ L∞(I, W 1,2(Ω)) and ∂tf

N = P N (∂tf) ∈ L2(I, L2(Ω)). This implies
cN
r , ∂tc

N
r , ∂2

t cN
r ∈ L2(I∗). Thus uN , ∂tu

N , ∂2
t u

N ∈ L2(I∗, XN ). (Note that the
norms may depend on N). To ensure solvability for large times at least for this
finite dimensional problem we have to establish a first a priori estimate.

Since uN , ∂tu
N , ∂2

t u
N ∈ L2(I∗, XN ), we can test the Galerkin system (37) with

uN and get

1
2dt‖u

N‖2
2 + 〈S(DuN ),DuN 〉 = 〈fN ,uN 〉.

Note that 〈(uN · ∇)uN ,uN 〉 = 0 due to div uN = 0. The coercivity of S (see (14)),
the continuity of P N on L2(Ω), and Gronwall’s inequality imply

1
2 max

[0,T∗]
‖uN‖2

2 +

T∗∫

0

‖DuN‖p
p dt ≤ C

T∫

0

‖f‖2
2 dt + 1

2‖u0‖
2
2 ≤ C(T, f ,u0).

This implies

‖cN
r ‖L∞(I∗) ≤ C(T, f ,u0), 1 ≤ r ≤ N.

As a consequence we can iterate Carathéodory’s theorem to push the solvability of
the Galerkin system (37) up to any fixed time interval I = [0, T ). Hence, indepen-
dently of N

‖u‖L∞(I,L2(Ω)) + ‖u‖Lp(I,W 1,p(Ω)) ≤ C,(38)

where we have used Korn’s inequality.
We got the first a priori estimate by using uN as a test function. To derive our

second a priori estimate we want to use AuN as a test function. The special choice
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of base functions ω
r ensures that we do not leave XN , the space of admissible test

functions. More explicitly we multiply the r-th equation of the Galerkin system (37)
by λrc

N
r and use (36) to obtain

〈∂tu
N , AuN 〉) −

〈
S(DuN ),DAuN

〉
−

〈
(uN ·∇)uN , AuN

〉
= 〈∇fN , ∇uN 〉.

Due to the periodicity we have A = −∆, so

1
2dt‖∇uN‖2

2 − 〈S(DuN ),D∆uN 〉 −
〈
(uN ·∇)uN , ∆uN

〉
= 〈∇fN , ∇uN 〉.

Using partial integration and the properties of S we deduce (cf. [16]):

〈
(uN · ∇)uN ,−∆uN

〉
=

∑

ijk

∫

Ω

∂kuN
i ∂iu

N
j ∂kuN

j dx,(39)

〈S(DuN ),−D∆uN 〉 =
∑

ijklm

∫

Ω

(∂ij∂klΦ)(DuN )∂mDiju
N ∂mDklu

N dx

(14)

≥ C IΦ(uN ).

(40)

Thus we have

1
2dt‖∇uN‖2

2 + c IΦ(uN ) ≤ ‖∇uN‖3
3 +

∣∣〈∇fN , ∇uN 〉
∣∣,(41)

If p > 11
5 one can show that ‖∇uN‖3

3 ≤ Cε‖∇uN‖p
p‖∇uN‖2

2 + εIΦ(uN ) (see [16]),

which enables us to apply Gronwall’s inequality after absorbing εIΦ(uN ) on the
left hand side. This would gives us a global estimate. If p > 5

3 we can show

that ‖∇uN‖3
3 ≤ Cε‖∇uN‖p

p‖∇uN‖R
2 + ε IΦ(uN ) for some constant 1 < R < ∞

and thereafter absorb εIΦ(uN ) on the left hand side and apply a local version of
Gronwall’s inequality (see lemma 24). Instead of using Gronwall’s inequality it is
also possible to divide the inequality by (1 + ‖∇uN‖2)

R as was done in [16] and
derive the same local estimates. This in turn implies enough regularity for uN

to justify all the later testing of the Galerkin system with “∂tu
N” and “∂tu

N∂t”.
Nevertheless we will not make use of these facts, since we are also interested in
smaller values of p than 5

3 . What we do is, we test immediately with “∂tu
N∂t”

to get in addition to (41) another estimate. Then we will use the resulting two
estimates at the same time to derive quite strong a priori estimates for uN for
values up to p > 3

2 in this section and up to p > 7
5 in the next section.

Let us take the time derivative of the Galerkin system (37):
〈
∂2

t u
N , ωr

〉
+

〈
∂tS(DuN ),Dω

r
〉

+ 〈∂t((u
N · ∇)uN ), ωr〉 = 〈∂tf

N , ωr〉,

for 1 ≤ r ≤ N . Since uN ∈ W 2,2(I, Xn), this makes sense and we can even test
with ∂tu

N ∈ W 1,2(I, Xn):

1
2dt‖∂tu

N‖2
2 +

〈
∂t(S(DuN )), ∂tDuN

〉

+〈∂t((u
N ·∇)uN ), ∂tu

N 〉 = 〈∂tf
N , ∂tu

N 〉.

Once again the second term on the left-hand side has a sign, namely
〈
∂t(S(DuN )), ∂tDuN

〉
=

∑

ikl

〈
(∂ij∂klΦ)(DuN )∂tDiju

N , ∂tDklu
N

〉

(14)

≥ cJΦ(uN ).
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This yields

dt‖∂tu
N‖2

2 + cJΦ(u) ≤
∣∣〈∂t((u

N ·∇)uN ), ∂tu
N 〉

∣∣ + |〈∂tf
N , ∂tu

N 〉|.(42)

Recall that
1
2dt‖∇uN‖2

2 + c IΦ(uN ) ≤ ‖∇uN‖3
3 +

∣∣〈∇fN , ∇uN 〉
∣∣.(43)

By a first view we have gained nothing. We have to control one more bad term,
namely |〈∂t((u

N ·∇)uN ), ∂tu
N 〉|, but we only got more information about the time

derivative of uN . But the critical term ‖∇uN‖3
3, which gave the lower bound for p

has no time derivatives. The next lemma shows that JΦ(uN ) reveals indeed more
information.

Lemma 11. Let 1 < q < ∞, then for almost every t ∈ I

dt

(
‖D̃u(t)‖q

q

)
≤ q C JΦ(t,u)

1
2

(
‖D̃u(t)‖2q−p

2q−p

) 1
2

≤ εJΦ(t,u) + Cε‖D̃u(t)‖2q−p
2q−p,

(44)

where D̃u ≡ (1 + |Du|2)
1
2 .

Proof. Note that

∂t

(
(D̃u)q

)
= q(D̃u)q−2(Djku) (∂tDjku).

Hence

dt(‖D̃u‖q
q) ≤ q

∫

Ω

(D̃u)q−1|∂tDu| dx

= q

∫

Ω

(D̃u)
p−2
2 |∂tDu| (D̃u)q− p

2 dx

≤ q C JΦ(u)
1
2

(
‖D̃u‖2q−p

2q−p

) 1
2 ,

where ‖D̃u‖2q−p
2q−p ≡

∫
Ω
(D̃u)2q−p dx even if 2q− p < 1. The rest is an implication of

Young’s inequality. �

This lemma enables us to produce dt(‖D̃uN‖q
q) on the left-hand side of (42) if we

add C ‖D̃uN‖2q−p
2q−p to the right-hand side. We have three critical terms to control:

‖∇uN‖3
3, |〈∂t((u

N ·∇)uN ), ∂tu
N 〉|, C ‖D̃uN‖2q−p

2q−p.

The first and the second one will be easier to estimate for large q, but the third
one for small q. The problem now is to find the optimal choice for q. We start
by examining which values of q are needed for the first and the second term. In

the view of lemma 24, we will be able to control arbitrary powers of ‖D̃uN‖q
q and

‖∂tu
N‖2

2. Note that we will skip the index N of uN to keep the notations simple.

Lemma 12. Let q > 9−3p
2 , then there exists a constant R1 = R1(p) > q, such that

‖∇u‖3
3 ≤ Cε‖D̃u‖R1

q + εIΦ(u) + ε.

Proof. If q ≥ 3, then there is nothing to prove, so assume q < 3. We can interpolate
L3(Ω) = [Lq(Ω), L3p(Ω)]θ with

1

3
=

(1 − θ)

q
+

θ

3p
⇔ θ =

(3 − q)p

3p − q
, 1 − θ =

q(p − 1)

3p− q
.
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Therefore

‖∇u‖3
3 ≤ ‖∇u‖3(1−θ)

q ‖∇u‖3θ
3p.

If 3θ < p, there exists an δ > 1 such that

‖∇u‖3
3 ≤ Cε‖∇u‖3(1−θ)δ′

q + ε‖∇u‖p
3p

≤ Cε‖∇u‖3(1−θ)δ′

q + C ε‖∇u‖p

1, 3p
p+1

≤ Cε‖∇u‖3(1−θ)δ′

q + εC (IΦ(u) + 1),

where we have used lemma 10. So by Korn’s inequality

‖∇u‖3
3 ≤ Cε2‖D̃u‖3(1−θ)δ′

q + ε2IΦ(u) + ε2.

We still have to verify 3θ < p, but this is equivalent to

3(3− q)p

3p − q
< p ⇔

9 − 3p

2
< q,

which holds due to the assumptions on q. �

Lemma 13. Let q > 9−3p
2 , then there exist constants R2 = R2(p) > 2 and R3 =

R3(p) > q such that

|〈(∂tu · ∇)u, ∂tu〉| ≤ εJΦ(u) + Cε

(
‖∂tu‖

R2
2 + ‖D̃u‖R3

q + 1
)
.

Proof. Note that lemma 7 (q 7→ 2q
2−p+q

) implies

‖∂tDu‖ 2q
2−p+q

≤ C JΦ(u)
1
2 ‖(D̃u)

2−p
2 ‖ 2q

2−p

≤ C JΦ(u)
1
2 ‖D̃u‖

2−p
2

q .
(45)

Furthermore W 1, 2q
2−p+q (Ω) ↪→ L

6q
6−3p+q (Ω). Since 9−3p

2 < q is equivalent to 2q
q−1 <

6q
6−3p+q

we can use the interpolation

L
2q

q−1 (Ω) = [L2(Ω), L
6q

6−3p+q (Ω)]θ.

This and Korn’s inequality implies

|〈(∂tu · ∇)u, ∂tu〉| ≤ ‖∂tu‖
2
2q

q−1

‖∇u‖q

≤ C ‖∂tu‖
2(1−θ)
2 ‖∂tu‖

2θ
6q

6−3p+q

‖∇u‖q

≤ C ‖∂tu‖
2(1−θ)
2 ‖∂t∇u‖2θ

2q
2−p+q

‖∇u‖q

(45)

≤ C ‖∂tu‖
2(1−θ)
2

(
JΦ(u)

1
2 ‖D̃u‖

2−p
2

q

)2θ

‖∇u‖q

≤ εJΦ(u) + Cε

(
‖∂tu‖

R2
2 + ‖D̃u‖R3

q + 1
)
.

�

It is indeed interesting that both terms |〈∂t((u
N ·∇)uN ), ∂tu

N 〉| and ‖∇uN‖3
3

require the same bound for q, which is q > 9−3p
2 . Now we have to find the upper

bound for q, in order to control ‖∇uN‖2q−p
2q−p. Unfortunately this requires extensive

calculations, so we will postpone this to the next section. Since the calculations
for p > 3

2 are a lot simpler, we will finish this section by outlining how to proceed
in this simpler case.
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So let us assume for the rest of this section that p > 3
2 . Set q := 3+p

2 , then
2q − p ≤ 3, so

‖∇uN‖2q−p
2q−p ≤ C (‖∇uN‖3

3 + 1).

That means that ‖∇uN‖2q−p
2q−p can be controlled if ‖∇uN‖3

3 can be controlled. But

the choice of q and p > 3
2 ensures that q > 9−3p

2 . Hence by lemma 12, lemma 13,
Korn’s inequality, and the above calculations we get

dt

(
‖∇uN‖2

2

)
+ c IΦ(uN )

≤ C
(
1 + ‖D̃uN‖R1

q + |〈∇fN , ∇uN 〉|
)
,

dt

(
‖∂tu

N‖2
2

)
+ dt

(
‖D̃uN‖q

q) + cJΦ(uN )

≤ C
(
1 + ‖∂tu

N‖R2
2 + ‖D̃uN‖R3

q + |〈∂tf
N , ∂tu

N 〉|
)
.

The remaining terms involving fN are easy to control:

|〈∇fN , ∇uN 〉| ≤ ‖P N f‖1,2‖∇uN‖2 ≤ C ‖f‖1,2‖∇uN‖2

≤ C ‖f‖2
1,2 + C ‖D̃uN‖2

q ,

|〈∂tf
N , ∂tu

N 〉| ≤ ‖P N(∂tf)‖2‖∂tu
N‖2 ≤ C ‖∂tf‖2‖∂tu

N‖2

≤ C ‖∂tf‖
2
2 + C ‖∂tu

N‖2
2.

Overall

dt

(
‖∇uN‖2

2

)
+ dt

(
‖∂tu

N‖2
2

)
+ dt

(
‖D̃uN‖q

q) + c IΦ(uN ) + cJΦ(uN )

≤ C
(
1 + ‖D̃uN‖max{R1,R3,2}

q + ‖∂tu
N‖

max{R2,2}
2 + ‖f‖2

1,2 + ‖∂tf‖
2
2

)
.

Now lemma 24 ensures that for small times, i.e. T ′ is small, we get boundedness of
the following expressions (uniformly in N):

‖∂tu
N‖2

L∞(I′,L2(Ω)), ‖∂tu
N‖2

L∞(I′,L2(Ω)), ‖∇uN‖q

L∞(I′,Lq(Ω)),

‖IΦ(uN )‖L1(I′), ‖JΦ(uN )‖L1(I′),

where I ′ = [0, T ′]. Later in section 6 will see that these a priori estimates are
sufficient to pass to the limit N → ∞ to get a solution u of our original problem (1).
But beforehand we will show in the next section how to derive similar a priori
estimates in the more general case 7

5 < p ≤ 2.

5. The case p > 7
5

If p is smaller than 3
2 , we have to do more subtle calculations. We cannot

just add (43) and (42) in order to get control of ‖D̃uN‖2q−p
2q−p. Recall that we

need q > 9−3p
2 in order to control the terms ‖∇uN‖3

3 and |〈(∂tu · ∇)u, ∂tu〉|. But

this implies 2q − p > 3. So ‖D̃uN‖2q−p
2q−p is worse than ‖∇uN‖3

3. Since ‖D̃uN‖2q−p
2q−p

grows with respect to q a lot faster than ‖D̃uN‖q
q, the term ‖D̃uN‖2q−p

2q−p requires

a preferably small choice of q. But since we cannot control ‖∇uN‖3
3 for q = 9−3p

2 ,

we certainly cannot control the worse term ‖D̃uN‖2q−p
2q−p for q = 9−3p

2 and thus for

no q ≥ 9−3p
2 . Hence we must proceed in a different way.

The central idea is that we have not made use of the term dt‖∇uN‖2
2. Since it

contains less information than dt‖D̃uN‖q
q, there is no need to extract information
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out of it. So we try to transfer dt‖∇uN‖2
2 in its original form 〈∂tu

N ,−∆uN 〉 to
the right-hand side of (43). This gives

IΦ(uN ) ≤ C
(
‖∇uN‖3

3 + |〈∇fN , ∇uN 〉| + |〈∂tu
N ,−∆uN〉|

)
,(46)

The disadvantage is that we have to control one extra term, but the advantage
is that we can raise this inequality to the r-th power. This gives, as long as we
can control the right-hand side, information on IΦ(uN )r, which can be used to

control ‖D̃u‖2q−p
2q−p for higher values of q.

Before we calculate the maximal allowed r and the resulting q we will reduce (46)
to a more suitable form: Lemma 12 implies that for q > 9−3p

2 there holds

IΦ(uN ) ≤ C
(
1 + ‖D̃uN‖R1

q + |〈∇fN , ∇uN 〉| + |〈∂tu
N ,−∆uN〉|

)
.

Since

‖fN‖L∞(I,W 1,2(Ω)) = ‖P N f‖L∞(I,W 1,2(Ω)) ≤ C ‖f‖L∞(I,W 1,2(Ω)) ≤ C,

this reduces to

IΦ(uN ) ≤ C
(
1 + ‖D̃uN‖R1

q + |〈∂tu
N ,−∆uN 〉|

)
.(47)

Since we can control arbitrary powers of ‖D̃uN‖q by the local Gronwall’s lemma 24,

we see that the convective and the force terms do not raise difficulties for q > 9−3p
2 ,

even if we raise the inequality to the r-th power. The following lemma gives control
of the remaining term |〈∂tu

N ,−∆uN 〉|.

Lemma 14. For 1 < p ≤ 2 there holds

|〈∂tu, ∆u〉| ≤ C ‖∂tu‖
4(p−1)
3p−2

2 JΦ(u)
2−p

2(3p−2) (IΦ(u) + 1)
p+2

2(3p−2) .

Proof. With the help of lemma 10 we conclude

|〈∂tu, ∆u〉| ≤ ‖∂tu‖ 3p
2p−1

‖u‖2, 3p
p+1

≤ C ‖∂tu‖ 3p
2p−1

(IΦ(u) + 1)
1
p

≤ ‖∂tu‖
1−θ
2 ‖∂tu‖

θ
1, 3p

1+p

(IΦ(u) + 1)
1
p

≤ ‖∂tu‖
1−θ
2

(
JΦ(u)

1
2 (IΦ(u) + 1)

2−p
2p

)θ
(IΦ(u) + 1)

1
p

with

2p− 1

3p
=

1 − θ

2
+

θ

3p
.

Therefore θ = 2−p
3p−2 and 1 − θ = 4p−4

3p−2 and 2−p
2p

· θ + 1
p

= p+2
2(3p−2) . This proves the

lemma. �

This lemma and (47) imply

IΦ(uN ) ≤ C
(
1 + ‖D̃uN‖R1

q

+ ‖∂tu
N‖

4(p−1)
3p−2

2 JΦ(uN )
2−p

2(3p−2) (IΦ(uN ) + 1)
p+2

2(3p−2)
)
.

Thus by Young’s inequality for p > 6
5

IΦ(uN ) ≤ C
(
1 + ‖D̃uN‖R1

q + ‖∂tu
N‖

8(p−1)
5p−6

2 JΦ(uN )
2−p
5p−6

)
.(48)
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We are finally at the point where we can raise the inequality to the r-th power

IΦ(uN )r ≤ C(r)
(
1 + ‖D̃uN‖rR1

q + ‖∂tu
N‖

r
8(p−1)
5p−6

2 JΦ(uN )r 2−p
5p−6

)
.

As long as r < 5p−6
2−p

, the last term can be broken up into a large power of ‖∂tu
N‖2

2

and JΦ(uN ). We summarize

Lemma 15. Let 4
3 < p ≤ 2, q > 9−3p

2 , and 1 ≤ r < 5p−6
2−p

, then there exist constants

R4 = R4(p), R5 = R5(p), such that

IΦ(uN )r ≤ Cε

(
1 + ‖D̃uN‖R4

q + ‖∂tu
N‖R5

2

)
+ εJΦ(uN ).

As in the case p > 3
2 we calculate from (42) by using lemma 13 for q > 9−3p

2

dt

(
‖∂tu

N‖2
2

)
+ cJΦ(uN ) ≤ C

(
1 + ‖∂tu

N‖R2
2 + ‖D̃uN‖R3

q + ‖∂tf‖
2
2

)
,

where we have used ‖∂tf
N‖2 = ‖P N (∂tf)‖2 ≤ C ‖∂tf‖2. Hence by lemma 11 and

lemma 15 for q > 9−3p
2 and r < 5p−6

2−p

IΦ(uN )r ≤ Cε

(
1 + ‖D̃uN‖R4

q + ‖∂tu
N‖R5

2

)
+ εJΦ(uN ),

dt

(
‖∂tu

N‖2
2

)
+ dt

(
‖D̃uN‖q

q

)
+ cJΦ(uN )

≤ C
(
1 + ‖∂tu

N‖R2
2 + ‖D̃uN‖R3

q + ‖D̃uN‖2q−p
2q−p + ‖∂tf‖

2
2

)
.

(49)

Different from the case p> 3
2 we can use IΦ(uN )r to control ‖D̃uN‖2q−p

2q−p.

Lemma 16. Let 1 < p ≤ 2, p < q < min{ 3p(r+1)
3+r

, 2p} and r ≥ 1, then there exists
a constant R6 > 1, such that

‖D̃u‖2q−p
2q−p ≤ Cε‖D̃u‖R6

q + ε
(
IΦ(u)r + 1

)
.

Proof. From the assumptions we know that p < q < 2p, which implies q < 2q − p < 3p.

Hence we can interpolate L2q−p(Ω) = [Lq(Ω), L3p(Ω)]θ with θ = 3p(q−p)
(2q−p)(3p−q) and

1 − θ = 2q(2p−q)
(2q−p)(3p−q) . Now we can estimate

‖D̃u‖2q−p
2q−p ≤ ‖D̃u‖(1−θ)(2q−p)

q ‖D̃u‖
θ(2q−p)
3p

(33)

≤ ‖D̃u‖(1−θ)(2q−p)
q

(
IΦ(u) + 1

) θ(2q−p)
p .

If θ(2q−p)
p

< r, then we can use Young’s inequality with δ := pr
θ(2q−p) > 1 to obtain

the desired result

‖D̃u‖2q−p
2q−p ≤ Cε‖D̃u‖(1−θ)(2q−p)δ′

q + ε
(
IΦ(u)r + 1

)
.

Still we have to verify the condition θ(2q−p)
p

< r. For this note that

θ(2q − p)

p
< r ⇔

3(q − p)

3p− q
< r ⇔ q <

3p(r + 1)

3 + r
,

which holds due to the assumptions on q. �

This lemma and (49) imply

dt

(
‖∂tu

N‖2
2

)
+ dt

(
‖D̃uN‖q

q

)
+ cJΦ(uN ) + c IΦ(uN )r

≤ C
(
1 + ‖∂tu

N‖
max{R2,R5}
2 + ‖D̃uN‖max{R3,R4,R6}

q + ‖∂tf‖
2
2

)(50)
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as long as

max
{
p, 9−3p

2

}
< q < min

{ 3p(r+1)
3+r

, 2p
}

and r < 5p−6
2−p

.(51)

This is the crucial estimate, which will on the one hand provide us with the desired
a priori estimate and on the other hand restrict the value of admissible p. It is
therefore of importance to determine the exact range of p for which we can find

suitable q, r which fulfill (51). We will do so now: Since 3p(r+1)
3+r

is increasing in r
we can always find a suitable r if and only if p, q fulfill

max
{
p, 9−3p

2

}
< q < min

{
6(p − 1), 2p

}
.

The existence of a suitable q is in turn equivalent to p > 7
5 . Hence we have shown

that for all p > 7
5 we can find suitable r and q, such that (51) is valid, e.g q = 12

5 and

r = 5
3 . Before we can apply lemma 24 to ensure uniform a priori estimates for uN ,

we have to take a look at the initial data, namely ‖(∇uN )(0)‖q and ‖(∂tu
N )(0)‖2.

The first one is easily bounded by

‖(∇uN )(0)‖q = ‖∇P Nu0‖q ≤ C ‖P Nu0‖1,2p

≤ C ‖P Nu0‖2,2 ≤ C ‖u0‖2,2 ≤ C.

To bound (∂tu
N )(0) let ϕ ∈ L2(Ω) with ‖ϕ‖2 ≤ 1, then

|〈∂tu
N , ϕ〉| = |〈∂tu

N
0 , P N

ϕ〉|

= |〈div S(DuN
0 )) + (uN

0 · ∇)uN
0 − fN (0), P N

ϕ〉|

≤ ‖∇S(DuN
0 )‖2 + C ‖u0‖

2
2,2 + ‖fN (0)‖2

≤ C ‖(D̃uN
0 )p−2

∇DuN
0 ‖2 + C ‖u0‖

2
2,2 + ‖fN (0)‖2

≤ C (‖u0‖2,2 + ‖u0‖
2
2,2 + ‖f(0)‖2) ≤ C,

since p ≤ 2. Here we have used that f ∈ L∞(I, W 1,2(Ω)) and that ∂tf ∈ L2(I, L2(Ω))
implies f ∈ C(I, L2(Ω)). Thus ‖(∂tu

N )(0)‖2 ≤ C. So we can apply lemma 24
to (50) and get for small times I ′ = [0, T ′]

‖∂tu
N‖L∞(I′,L2(Ω)) + ‖∇uN‖L∞(I′,Lq(Ω))(52)

+‖IΦ(uN )‖Lr(I′) + ‖JΦ(uN )‖L1(I′) ≤ C.(53)

We use (48) to get rid of the r–dependence:

‖IΦ(uN )‖
L

5p−6
2−p (I′)

≤ C,(54)

where 5p−6
2−p

= ∞ if p = 2.

In the next section we will show that these a priori estimates are by far enough
to pass to the limit N → ∞.

6. Passage to the Limit

Theorem 17. Let 7
5 < p ≤ 2. Let Φ be a p–potential with induced extra stress S,

i.e. S = ∇n×nΦ. Assume that

‖f‖L∞(I,W 1,2(Ω)) + ‖∂tf‖L2(I,L2(Ω)) + ‖u0‖W
2,2
div

(Ω) ≤ K.
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Then there exists a constant T ′ = T ′(K) with 0 < T ′ < T , such that the system (1)
has a strong solution u on I ′ = [0, T ′] satisfying

‖∂tu‖L∞(I′,L2(Ω)) + ‖u‖
L∞(I′,W

1, 12
5 (Ω))

+ ‖JΦ(u)‖L1(I′) + ‖IΦ(u)‖
L

5p−6
2−p (I′)

≤ C.
(55)

Proof. In sections 4 and 5 we have proven the existence of approximative solutions
uN , which solve (37) and satisfy

‖∂tu
N‖L∞(I′,L2(Ω)) + ‖∇uN‖L∞(I′,Lq(Ω))

+‖IΦ(uN )‖
L

5p−6
2−p (I′)

+ ‖JΦ(uN )‖L1(I′) ≤ C.
(56)

Since q = 12
5 and r = 5

3 was an admissible choice within the derivation of the a priori

estimates, we can assume q ≥ 12
5 . Estimate (56) especially implies ‖IΦ(uN )‖L1(I′) ≤

C, so by lemma 6 we get ‖∇2uN‖p
p,I′×Ω ≤ C and therefore ‖uN‖Lp(I′,W 2,p(Ω)) ≤ C,

since 〈uN , 1〉 = 0. Overall we can pick a subsequence (still denoted by uN ) with

uN ⇀ u in Lp(I ′, W 2,p(Ω)),(57)

uN ∗
⇀ u in L∞(I ′, W 1, 125 (Ω)),(58)

∂tu
N ∗

⇀ ∂tu in L∞(I ′, L2(Ω)),(59)

where we have used that the weak limit of distributions on I × Ω is unique. Since
W 2,p(Ω) ↪→↪→ W 1,2(Ω) for p > 7

5 , the lemma of Aubin–Lions implies the existence
of a subsequence, such that

∇uN → ∇u in L2(I ′ × Ω).(60)

As a consequence we get convergence of the convective term

(uN · ∇)uN → (u · ∇)u in L
4
3 (I ′ × Ω).(61)

Observe that

‖S(DuN )‖L2(I′×Ω)

(15)

≤ C ‖(D̃uN )p−1‖L2(I′×Ω)

≤ C (1 + ‖∇uN‖L2(I′×Ω)) ≤ C.
(62)

On the other hand by (60) DuN → Du a.e. in I ′ × Ω, so

S(DuN ) → S(Du) a.e. in I ′ × Ω(63)

due to the continuity properties of S. Now Vitali’s theorem, (62), and (63) imply

S(DuN ) → S(Du) a.e. in L1(I ′ × Ω).(64)

Choose ω
r and ϕ ∈ C∞

0 (I ′), then we can conclude from (37), (59), (61), and (64)
that ∫

I′

ϕ
(〈

∂tu, ωr
〉

+ 〈S(Du),Dω
r〉 + 〈(u · ∇)u, ωr〉

)
dt =

∫

I′

ϕ〈f , ωr〉dt.

Furthermore u fulfills

‖∂tu‖L2(I′×Ω) + ‖S(Du)‖L1(I′×Ω) + ‖(u · ∇)u‖
L

4
3 (I′×Ω)

≤ C.
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Since {ω1, ω2, . . .} is dense in W s,2
div(Ω) and W s,2

div(Ω) ↪→ W 1,∞
div (Ω) for s > 5

2 , we
deduce that

∫

I′

ϕ
(〈

∂tu, ω
〉

+ 〈S(Du),Dω〉 + 〈(u · ∇)u, ω〉
)

dt =

∫

I′

ϕ〈f , ω〉dt

is fulfilled for all ω ∈ W s,2
div(Ω), especially for all ω ∈ V . Note that

〈
∂tu, ω

〉
, 〈S(Du),Dω〉, 〈(u · ∇)u, ω〉, 〈f , ω〉 ∈ L1(I ′)

so
〈
∂tu, ω

〉
+ 〈S(Du),Dω〉 + 〈(u · ∇)u, ω〉 = 〈f , ω〉(65)

for all ω ∈ V and a.e. t ∈ I ′. It remains to show that u(0) = u0. But this follows
from the parabolic embedding

‖P Nu0 − u(0)‖2 = ‖uN (0) − u(0)‖2

≤ C ‖uN − u‖
1
2

L2(I′,L2(Ω))︸ ︷︷ ︸
→0

‖∂tu
N − ∂tu‖

1
2

L2(I′,L2(Ω))︸ ︷︷ ︸
≤C

→ 0.(66)

Since P Nu0 → u0 in L2(Ω) we get u(0) = u0. Overall we have shown by (65)
and (66) that u satisfies (1) in the weak sense. It remains to prove the norm
estimates for u, IΦ(u) and JΦ(u). First of all, from (58) and (59) there follows

‖∂tu‖L∞(I′,L2(Ω)) + ‖u‖
L∞(I′,W

1, 12
5 (Ω))

≤ C.

Define H : I × Ω × R
d×d × R

d×d → R by

H(t, x,y, z) :=
∑

jkαβ

(∂αβ∂jkΦ)(t, x,y) zαβ zjk,

then

(a) H ≥ 0,
(b) H is measurable in (t, x) for all y, z,
(c) H is continuous in z and y for almost every (t, x) ∈ I ′ × Ω,
(d) H is convex in z for all y and almost every (t, x) ∈ I ′ × Ω.

Furthermore

‖JΦ
A(uN )‖L1(I′,L1(Ω)) =

∥∥∥H(DuN , ∂tDuN )
∥∥∥

L1(I′×Ω)
,(67)

‖IΦ
A(uN )‖L1(I′,L1(Ω)) =

∥∥∥
d∑

k=1

H(DuN , ∂kDuN )
∥∥∥

L1(I′×Ω)
.(68)

Due to lemma 10 and IΦ(uN )L1(I) + JΦ(uN )L1(I) ≤ C we have

‖∂tu
N‖

Lp(I,W
1,

3p
p+1 (Ω))

≤ C.

Thus we can pass to a subsequence (still denoted by uN ) with

∂t∇uN ⇀ ∂t∇u in Lp(I ′, L
3p

p+1 (Ω)).(69)
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Note that (69), (57), and (60) imply

∇
2uN ⇀ ∇

2u in L1(I ′ × Ω),

∂t∇uN ⇀ ∂t∇u in L1(I ′ × Ω),

∇uN → ∇u in L1(I ′ × Ω).

Thus from the semicontinuity theorem of De Giorgi ([9], pg. 132), (56), and (67)
follows

‖JΦ
A(u)‖L1(I′) ≤ C.(70)

Furthermore H , DuN , ∂kDuN fulfill all the requirements of corollary 26. Thus we
deduce from (56) and corollary 26

‖IΦ(u)‖
L

5p−6
2−p (I′)

≤ C.(71)

This proves the theorem. �

The next corollary shows what regularity for u can be deduced from (55). This
justifies that we call u a “strong” solution.

Corollary 18. Let u be the solution of theorem 17, then

u ∈ L
p(5p−6)

2−p (I ′, W 2, 3p
p+1 (Ω)),

∂2
t u ∈ L2(I ′, (W 1,2

div (Ω))′),

(D̃u)
p
2 ∈ C(I ′, L

12(p−1)
p

,
4(p−1)
2−p ) (Lorentz space).

For all 1 ≤ s < 6(p − 1) there holds

u ∈ C(I ′, W 1,s(Ω)).

Furthermore there exists a pressure π with

∇π ∈ L
2(5p−6)

2−p (I ′, L2(Ω))

such that

∂tu − div(S(Du)) + (u · ∇)u + ∇π = f(72)

a.e. in I ′ × Ω.

Proof. From (55) and lemma 5 we deduce that

(D̃u)
p
2 ∈ L

2(5p−6)
2−p (I ′, W 1,2(Ω)),

∂t

(
(D̃u)

p
2

)
∈ L2(I ′, L2(Ω)).

Thus by theorem 35 with θ = 2−p
4(p−1) we get

(D̃u)
p
2 ∈ C(I ′, [W 1,2(Ω), L2(Ω)]θ, 1

θ
)

= C(I ′, B
5p−6

4(p−1)
,2

4(p−1)
2−p

(Ω)) Besov Space

↪→ C(I ′, L
12(p−1)

p
,
4(p−1)
2−p (Ω)) Lorentz Space.

For more details regarding Besov spaces and Lorentz spaces see Bergh, Löfström
[3] and Triebel [26]. Let 1 ≤ s < 6(p − 1), then

(D̃u)
p
2 ∈ C(I ′, L

12(p−1)
p

,
4(p−1)
2−p (Ω)) ↪→ C(I ′, L

2s
p (Ω)).
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As a consequence ‖(D̃u)
p
2 ‖ 2s

p
∈ C(I ′), so Du ∈ C(I ′, Ls(Ω)). From Korn’s inequal-

ity we deduce

u ∈ C(I ′, W 1,s(Ω)).

From ‖(u · ∇)u‖2 ≤ ‖u‖1, 125
and the choice s := 12

5 < 6(p − 1) we deduce

(u · ∇)u ∈ C(I ′, L2(Ω)).

From (55) and lemma 10 we deduce that

‖u‖
L

p(5p−6)
2−p (I′,W

2,
3p

p+1 (Ω))
≤ C.

Further note that

|∇(S(Du))| ≤ C (D̃u)p−2|∇Du|,

so

‖∇(S(Du))‖2 ≤ C IΦ(u)
1
2 .

Thus S(Du) ∈ L
2p(5p−6)

2−p (I ′, W 1,2(Ω)). We have shown that all the terms ∂tu,
− div(S(Du)), and (u · ∇)u in (65) are in L

2(5p−6)
2−p (I ′, L2(Ω)). Thus De Rahm’s

theorem ensures the existence of a pressure π with ∇π ∈ L
2(5p−6)

2−p (I ′, L2(Ω)). From

|∂t(S(Du))| ≤ C (D̃u)p−2|∂tDu|

and lemma 5 we deduce

‖∂t(S(Du))‖2
2 ≤ C JΦ(u).

This and (72) prove ∂2
t u ∈ L2(I ′, (W 1,2

div (Ω))′). This proves the corollary. �

7. Uniqueness

Theorem 19. Let 7
5 < p ≤ 2 and let u and v be weak solutions of (1) with

u,v ∈ C(I, W 1, 12
5 (Ω)).

Then u = v.

Proof. Let e := u− v. We take the difference of the equations of u and v and use
e as a test function, then

〈∂te, e〉 + 〈S(Du) − S(Dv),Du −Dv〉 + 〈(u · ∇)u − (v · ∇)v, e〉 = 0.

This reduces to

1
2dt‖e‖

2
2 + 〈S(Du) − S(Dv),Du −Dv〉 ≤

∣∣〈(e · ∇)u, e〉
∣∣.(73)

Since p > 7
5 , there exists q > 8

5 with

2 − p

2
·

2q

2 − q
<

12

5
.

Thus

‖(D̃u)
2−p
2 + (D̃v)

2−p
2 ‖ 2q

2−q
∈ L∞(I).

Lemma 8 implies

‖De‖q ≤ C
〈
S(Du) − S(Dv),Du−Dv

〉 1
2 .
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Korn’s inequality implies ‖e‖ 3q
3−q

≤ C ‖e‖1,q ≤ C ‖De‖q. So by (73)

1
2dt‖e‖

2
2 + c ‖e‖2

3q
3−q

≤
∣∣〈(e · ∇)u, e〉

∣∣ ≤ ‖e‖2
24
7
‖u‖1, 125

≤ C ‖e‖2
24
7

.

Since q > 8
5 there holds 2 < 3q

3−q
< 24

7 and L
24
7 (Ω) = [L2(Ω), L

3q
3−q (Ω)]θ with

0 < θ < 1. Thus for δ > 0

1
2dt‖e‖

2
2 + c ‖e‖2

3q
3−q

≤ C ‖e‖
2(1−θ)
2 ‖e‖2θ

3q
3−q

≤ Cδ‖e‖
2
2 + δ‖e‖2

3q
3−q

.

Gronwall’s inequality implies e = 0, i.e. u = v. �

Note that for p > 7
5 we have derived for small times the existence of a strong

solution u with u ∈ C(I ′, W 1,s(Ω)) for all 1 ≤ s < 6(p−1). Especially this solution

satisfies u ∈ C(I ′, W 1, 12
5 (Ω)). Theorem 19 above ensures that this solution is

unique within the class of strong solutions in C(I ′, W 1, 12
5 (Ω)). It is interesting to

observe that the uniqueness as proven above exactly holds up to the same bound
p > 7

5 for which we have derived the existence of such solutions.

8. Space and Time Dependent Potentials

In the previous sections we have assumed that S is induced by a p–potential,
where p is constant with 7

5 < p ≤ 2. In the study of electrorheological fluids it
is necessary to admit p, which may vary in space and time. We are especially
interested in the model studied in [21, 22, 24, 25], i.e.

div E = 0,

curlE = 0,
(74)

ρ0∂tu − div S + ρ0(u · ∇)u + ∇π = ρ0f + χE [∇E]E,

div u = 0,
(75)

where E is the electric field, P the polarization, ρ0 the constant density, u the
velocity, π the pressure, f the mechanical, χE the dielectric susceptibility and the
extra stress S is given by

S = α21

(
(1 + |D|2)

p−1
2 − 1

)
E⊗E + (α31 + α33|E|2)(1 + |D|2)

p−2
2 D

+ α51(1 + |D|2)
p−2
2 (DE⊗E + E⊗DE).

(76)

Moreover, p is function of the electric field, i.e. p = p(|E|2). Note that (74) decouples
from (75). Thus, while solving (75) we can assume that E and p are given functions.
Due to the nature of the Maxwell equations (74) it is reasonable to consider smooth
E and p. We define p− := infΩ×I p and p+ := supΩ×I p. Here we study the
simplified model

∂tu − div
(
S(Du)

)
+ (u · ∇)u + ∇π = f ,

div u = 0,
(77)

with

S(Du) = (1 + |Du|2)
p−2
2 Du,

where p is a given function with p ∈ W 1,∞(I × Ω). We will show that all the
results of the previous sections may be transfered to this model. Especially, we
will prove short time existence of strong solutions of (77) for large data as long as
7
5 < p− ≤ p+ ≤ 2. We will also show, that this solution is unique within its class
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of regularity. Instead of repeating all the steps as in the case where p is constant,
we will indicate all necessary changes in the calculations.

Definition 20. Let p : I × Ω → (1, 2] be a W 1,∞(I × Ω) function with 1 < p− :=
inf p ≤ p+ := sup p ≤ 2. Let F : I × Ω × R

≥0 → R
≥0 be such that for a.e.

(t, x) ∈ I ×Ω the function F (t, x, ·) is a p(t, x)–potential (see definition 1) and the
ellipticity constants do not depend on (t, x), i.e. the function Φ : R

n×n → R
≥0

defined through Φ(t, x,B) = F (t, x, |Bsym|) satisfies∑

jklm

(∂jk∂lmΦ)(t, x,B)CjkClm ≥ γ1(1 + |Bsym|2)
p(t,x)−2

2 |Csym|2,(78)
∣∣(∇2

n×nΦ)(t, x,B)
∣∣ ≤ γ2(1 + |Bsym|2)

p(t,x)−2
2(79)

for all B,C ∈ R
n×n with constants γ1, γ2 > 0. Further we assume that F is

continuously differentiable with respect to t and x and that (∂tF )(t, x, ·) : R
≥0 →

R
≥0, resp. (∂jF )(t, x, ·) : R

≥0 → R
≥0, is a C1–function on R

≥0, resp. a C2–
function on R

>0, for all t ∈ I, x ∈ Ω. Moreover, assume that for j = 1, . . . , d

(∂tF )(t, x, 0) = 0,

(∂tF )(t, x, R) > 0 for all R > 0,

(∂jF )(t, x, 0) = 0,

(∂jF )(t, x, R) > 0 for all R > 0,
∣∣(∂t∇n×nΦ)(t, x,B)

∣∣ ≤ γ3(1 + |Bsym|2)
p(t,x)−1

2 ln(1 + |Bsym|),
∣∣(∇∇n×nΦ)(t, x,B)

∣∣ ≤ γ3(1 + |Bsym|2)
p(t,x)−1

2 ln(1 + |Bsym|),

(80)

with γ3 > 0. Such a function F , resp. Φ, is called a time and space dependent

p-potential and the corresponding constants γ1, γ2 and γ3 are called the ellipticity
and growth constants of F , resp. Φ. The function p is called the exponent of the
potential. As in definition 1 we define the extra stress S by S := ∇n×nΦ.

The standard examples of such S are

S(Du) ≡ (1 + |Du|2)
p−2
2 Du, S(Du) ≡ (1 + |Du|)p−2 Du,

where p ∈ W 1,∞(I × Ω), especially (77) is included.
Assume for the rest of this section that F , resp. Φ is a time and space dependent

p–potential and S := ∇n×nΦ. Then remark 2, remark 3, and theorem 4 still hold
true. We will now transfer the estimates of section 2 to the case of time and
space dependent p–potentials. The involved generic constants C may depend on
‖p‖W 1,∞(I×Ω).

We define the functionals IΦ, JΦ, and GΦ as in (16), (17), and (18). Then (22)
and (23) hold true without change, while (25) and (26) must be modified to

γ1‖∇
(
(D̃u)

p
2

)
‖2
2 ≤ C

(
IΦ(u) +

∫

Ω

(D̃u)p ln2(D̃u) dx
)
,(81)

γ1‖∂t

(
(D̃u)

p
2

)
‖2
2 ≤ C

(
JΦ(u) +

∫

Ω

(D̃u)p ln2(D̃u) dx
)
.(82)

In order to explain why there appears the logarithmic term, we will deduce (81)
explicitly: Note that

∣∣∇
(
(D̃u)

p
2

)∣∣ ≤ C (D̃u)
p−2
2 |∇2u| + |∇p| (D̃u)

p
2 ln(D̃u).(83)
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Now (83), ‖∇p‖L∞(I×Ω) ≤ C, and (22) prove (81).
Furthermore, (28) and (29) hold true, if ‖·‖p

p is exchanged by ρp(·), where

ρp(·, g) : I → R
≥0 is defined by

ρp(t, g) :=

∫

Ω

|g(t, x)|p(t,x) dx.

Especially

γ1ρp(t, ∇
2u) ≤ C IΦ(t,u) + γ1ρp(t, D̃u).(84)

γ1ρp(t, ∂tDu) ≤ C JΦ(t,u) + γ1ρp(t, D̃u).(85)

Mostly we will simply write ρp(g) instead of ρp(t, g). Moreover, (31) and lemma
8 hold true without change. The estimates of lemma 9 and 10 will in our case be
modified to

γ1

(
ρ3p(D̃u)

) 1
3 ≤ C

(
IΦ(u) +

∫

Ω

|D̃u|p ln2(D̃u) dx + ρp(D̃u)
)
.

and

‖u‖p−

2, 3p−

p−+1

≤ C (IΦ(u) + 1),(86)

‖∂tu‖
p−

1, 3p−

p−+1

≤ C JΦ(u)
p−

2

(
IΦ(u) + 1

) 2−p−

2 ≤ C(JΦ(u) + IΦ(u) + 1).(87)

With all these estimates above it is possible to transfer all calculations of section
4 and 5 to the case of a time and space dependent p–potential. Indeed, the test
function u can be applied without change. Especially we get

‖uN‖2
L∞(I,L2(Ω)) +

∫

I

∫

Ω

|DuN |p(x,t) dx dt ≤ C.(88)

The estimates for the test functions ∆u and “∂2
t u” involve additional terms of lower

order, which can always be estimated. As an example we will in analogy to (40)
consider the nonlinear main part div(S(Du)) when tested with −∆u, i.e.

〈S(DuN ),D∆uN 〉 =
∑

ijklm

∫

Ω

(∂ij∂klΦ)(DuN )∂mDiju
N ∂mDklu

N dx

+
∑

klm

∫

Ω

(∂m∂klΦ)(DuN ) ∂mDklu
N dx

(16),(80)

≥ IΦ(uN ) − C

∫

Ω

(D̃uN )
p−1
2 ln(1 + |DuN |)|∇2uN | dx

≥ IΦ(uN ) − ε

∫

Ω

(DuN )p−2 |∇2uN |2 dx

− Cε

∫

Ω

(D̃uN )p ln2(1 + |DuN |) dx

(22)

≥ c
2 IΦ(uN ) − Cε

∫

Ω

(D̃uN )p
(
1 + ln2(D̃uN )

)
dx.
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Thus we can derive an analogy to (47) with an additional logarithmic term on the
right hand side. Repeating the calculations of section 5 we get (compare with (47))

IΦ(uN ) ≤ C

(
1+‖D̃uN‖R1

q +|〈∂tu
N , ∆uN 〉|+

∫

Ω

(D̃uN )p
(
1+ln2(D̃uN )

)
dx

)
.(89)

Note that for every δ > 0 there holds

(D̃uN )p
(
1 + ln2(D̃uN )

)
≤ Cδ(D̃uN )p+δ .

Especially, if we choose p + δ ≤ q, then we can hide the logarithmic term in (89) in

‖D̃uN‖q
q, i.e.

IΦ(uN ) ≤ C
(
1 + ‖D̃uN‖R1

q + |〈∂tu
N , ∆uN 〉|

)
.(90)

This proves that (47) holds even in the case of a space and time dependent potential.
The rest of the calculactions in section 5, e.g. testing with “∂2

t u”, can be carried out

in the same way, that is all logarithmic terms will be hiden in ‖D̃uN‖q
q. Overall,

this proves that the crucial estimates (50) and (51) remain valid, where p in (51)
has to be replaced by p−, the lower bound of p. Thus, we have the following result
for short time existence for the system (77):

Theorem 21. Let p ∈ W 1,∞(I × Ω) with 7
5 < p− ≤ p+ ≤ 2. Let S be induced by

a space and time dependent p–potential Φ, i.e. S = ∇n×nΦ. Let 7
5 < p− ≤ p+ ≤ 2

and

‖f‖L∞(I,W 1,2(Ω)) + ‖∂tf‖L2(I,L2(Ω)) + ‖u0‖W
2,2
div (Ω) ≤ K.

Then there exists a constant T ′ = T ′(K) with 0 < T ′ < T , such that the system (77)
has a strong solution u on I ′ = [0, T ′]. Further

‖∂tu‖L∞(I′,L2(Ω)) + ‖u‖
C(I′,W

1, 12
5 (Ω))

+ ‖JΦ(u)‖L1(I′) + ‖IΦ(u)‖
L

5p−−6

2−p− (I′)

≤ C.(91)

Corollary 22. Let u be the solution of theorem 21, then

u ∈ L
p−(5p−−6)

2−p− (I ′, W
2, 3p−

p−+1 (Ω)),

∂2
t u ∈ L2(I ′, (W 1,2

div (Ω))′),

(D̃u)
p
2 ∈ C(I ′, L

12(p−−1)

p− ,
4(p−−1)

2−p− ) (Lorentz space).

For all 1 ≤ s < 6(p− − 1) there holds

u ∈ C(I ′, W 1,s(Ω)).

Furthermore there exists a pressure π with

∇π ∈ L
2(5p−−6)

2−p− (I ′, L2(Ω))

such that

∂tu − div(S(Du)) + (u · ∇)u + ∇π = f(92)

a.e. in I ′ × Ω.
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Proof. Using (91) we proceed as in corollary 18. The logarithmic terms that ap-
pear due to the space and time dependency of p (see (81) and (82)) can easily be
controlled due to ‖u‖

C(I′,W
1, 12

5 (Ω))
< ∞. �

The following theorem shows that the solutions are unique within their class of
regularity.

Theorem 23. Let p,S be as in theorem 21. Let u and v be weak solutions of (77)
with

u,v ∈ C(I, W 1, 12
5 (Ω)).

Then u = v.

We want to remark that the results of theorem 21, corollary, 22, and theorem
23 can easily be generalized to the case of electrorheological fluids: In the model
(74) and (75) the equation of motion (75) is the crucial one. The equations for E

namely (74) decouple, i.e. E is the solution of the quasi–static Maxwell equations.
These equations are well studied and we assume therefore that a smooth unique
solution E of (74) is given and we want to solve (75). We further assume that the
dependence of p = p(|E|2) on E is sufficiently smooth, such that p ∈ W 1,∞(Ω).
Since ρ0 is a constant, we can simplify (75) to (77), which is exaclty the system we
have studied above. The only difference is that the extra stress defined in (76) is
not induced by a time and space dependend p–potential Φ as defined in defintion
20. Nevertheless under suitable conditions on α21, α31, α33, and α51 (see [25]) the
extra stress S still satisfies the monotonicity conditions of theorem 4. Moreover, if
we generalize the definitions of IΦ, JΦ, and GΦ by

IΦ(t,u) :=
〈∑

r

∑

jkαβ

(∂αβSjk)
(
Du(t)

)
∂rDαβu(t), ∂rDjku(t)

〉
,

JΦ(t,u) :=
〈 ∑

jkαβ

(∂αβSjk)
(
Du(t)

)
∂tDαβu(t), ∂tDjku(t)

〉
,

GΦ(t,w,v) :=
〈 ∑

jkαβ

(∂αβSjk)(Dw(t))Dαβv(t), Djkv(t)
〉
,

then it can easily be shown that (81) till (87) still hold. These estimates allow to
generalize theorem 21, corollary 22, and 23 to system (75) for electrorheological
fluids.

9. Appendix

Lemma 24 (local version of Gronwall’s lemma). Let T, α, c0 > 0 be given constants
and let h ∈ L1(0, T ) with h ≥ 0 a.e. in [0, T ], 0 ≤ f ∈ C1([0, T ]) satisfy

f ′(t) ≤ h(t) + c0 f(t)1+α .(93)

Let t0 ∈ [0, T ] be such that α c0 H(t0)
α t0 < 1, where

H(t) := f(0) +

t∫

0

h(s) ds .

Then for all t ∈ [0, t0] there holds

f(t) ≤ H(t) + H(t)
((

1 − α c0 H(t)α t
)− 1

α − 1
)

.
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Proof. Let δ > 0 be small such that α c0 (H(t0)+δ)α t0 < 1. Let t1 ∈ [0, t0] be fixed.
Then Hδ := H(t1)+ δ satisfies α c0 (H(t1)+ δ)α t0 < 1. Define y : [0, t1] → R

≥0 by

y(t) :=

t∫

0

f(s)1+α ds .

Then y ∈ C1([0, t1]), y(0) = 0, y ≥ 0, and for all t ∈ [0, t1]

y′(t) = f(t)1+α =

(
f(0) +

t∫

0

f ′(s) ds

)1+α (93)

≤
(
H(t) + c0 y(t)

)1+α

≤
(
Hδ + c0 y(t)

)1+α
.

(94)

Further, let g ∈ C1([0, t1]) be given by

g(t) := −
(
Hδ + c0 y(t)

)−α
.

Then

g′(t) = α c0

(
Hδ + c0 y(t)

)−1−α
y′(t)

(94)

≤ α c0 .

Thus g(t) ≤ g(0) + α c0 t for t ∈ [0, t1] and therefore

−
(
Hδ + c0 y(t)

)−α
≤ −H−α

δ + α c0 t .

Since α c0 Hα
δ t1 < 1, we estimate

Hδ + c0 y(t) ≤
(
H−α

δ − α c0 t
)− 1

α

and

y(t) ≤ c−1
0

((
H−α

δ − α c0 t
)− 1

α − Hδ

)

= c−1
0 Hδ

((
1 − Hα

δ α c0 t
)− 1

α − 1
)

.

The limit δ → 0 implies for the choice t = t1

y(t1) ≤ c−1
0 H(t1)

((
1 − H(t1)

α α c0 t1
)− 1

α − 1
)

.

From (93) we deduce f(t1) ≤ H(t1) + c0 y(t1) . Since t1 ∈ [0, t0] was arbitrary, this
proves the lemma. �

Lemma 25. Let Ω be a domain in R
d and I := [0, T ] ⊂ R, T > 0. Further let

F : I × Ω × R
m × R

n → R with

(a) F ≥ 0,
(b) F measurable in t, x for a.a. y, z,
(c) F (t, x, ·, ·) continuous for a.a. t, x,
(d) F (t, x,y, ·) be convex for all y and a.a. t, x.

If wN → w in L1
loc(I × Ω) and ∇wN ⇀ ∇w in L1

loc(I × Ω), then for all r, s with
1 ≤ r < ∞, 1 < s < ∞ or r = s = 1 there holds

∥∥∥F (t, x,w, ∇w)
∥∥∥

Lr(I,Ls(Ω))
≤ lim inf

N

∥∥∥F (t, x,wN , ∇wN )
∥∥∥

Lr(I,Ls(Ω))
.
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Proof. If r = s = 1 the result follows immediately from theorem 1 (De Giorgi)
in [9], pg. 132. So let us assume 1 ≤ r < ∞, 1 < s < ∞. Since Ls(Ω) is reflexive,

the dual of Lr(I, Ls(Ω)) is Lr′

(I, Ls′

(Ω)) (see [6]) and for all f ∈ Lr(I, Ls(Ω))

‖f‖Lr(I,Ls(Ω)) = sup
‖ϕ‖

Lr′ (I,Ls′ (Ω))
≤1

|〈f, ϕ〉|.

For ϕ ∈ Lr′

(I, Ls′

(Ω)) with ϕ ≥ 0 and ‖ϕ‖Lr′(I,Ls′ (Ω) ≤ 1 let Fϕ : I×Ω×R
m×R

n →

R be defined by

Fϕ(t, x,y, z) := F (t, x,y, z)ϕ(t, x).

Then Fϕ fulfills

(a) Fϕ ≥ 0,
(b) Fϕ measurable in t, x for a.a. y, z,
(c) Fϕ(t, x, ·, ·) continuous for a.a. t, x,
(d) Fϕ(t, x,y, ·) be convex for all y and a.a. t, x.

Hence by theorem 1 (De Giorgi) from [9], pg. 132
∫

I

∫

Ω

F (t, x,w, ∇w)ϕ(t, x) dx dt

≤ lim inf
N

∫

I

∫

Ω

F (t, x,wN , ∇wN )ϕ(t, x) dx dt

≤ lim inf
N

∥∥F (t, x,wN , ∇wN )
∥∥

Lr(I,Ls(Ω))
.

(95)

Since F ≥ 0, the norm formula for F reduces to
∥∥F (t, x,w, ∇w)

∥∥
Lr(I,Ls(Ω))

= sup
‖ϕ‖

Lr′ (I,Ls′ (Ω))
≤1

ϕ≥0

∫

I

∫

Ω

F (t, x,w, ∇w)ϕ(t, x) dx dt.

This and (95) proves the lemma. �

Corollary 26. Let Ω be a domain in R
n and I := [0, T ] ⊂ R, T > 0. Let F :

I × Ω × R
m × R

n → R and G : I × Ω × R
m → R

n×n with

F (t, x,y, z) =

n∑

α,β=1

Gαβ(t, x, y)zαzβ.

Moreover, assume G satisfies

(a) G ≥ 0, i.e. is positive semidefinite,
(b) G measurable in t, x for a.a. y,
(c) G(t, x, ·) continuous for a.a. t, x.

If wN → w in L1
loc(I × Ω) and ∇wN ⇀ ∇w in L1

loc(I × Ω), then for all r, s with
1 ≤ r < ∞, 1 ≤ s < ∞ there holds

∥∥∥F (t, x,w, ∇w)
∥∥∥

Lr(I,Ls(Ω))
≤ lim inf

N

∥∥∥F (t, x,wN , ∇wN )
∥∥∥

Lr(I,Ls(Ω))
.
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Proof. For 1
2 < q < 1 define Fq by

Fq(t, x,y, z) := (F (t, x,y, z))q

then Fq fulfills the requirements of lemma 25. Thus

∥∥∥F (t, x,w, ∇w)
∥∥∥

Lr(I,Ls(Ω))
=

∥∥∥Fq(t, x,w, ∇w)
∥∥∥

1
q

L
r
q (I,L

s
q (Ω))

≤ lim inf
N

∥∥∥Fq(t, x,wN , ∇wN )
∥∥∥

1
q

L
r
q (I,L

s
q (Ω))

.

= lim inf
N

∥∥∥F (t, x,wN , ∇wN )
∥∥∥

Lr(I,Ls(Ω))
.

This proves the corollary. �

We will now prove an interpolation theorem, which is very useful in deriving
estimates for solutions of parabolic problems pointwise in time. Suppose that u is
a solution to a parabolic problem, such that u, resp. ∂tu, are in the Bochner spaces
Lp0(I, A0), resp. Lp1(I, A1), where A0 and A1 are Banach spaces. Then we will
see that u is with respect to the time a continuous function with values in the real
interpolation space Aθ,q := [A0, A1]θ,q, where θ = θ(p0, p1) and q = q(p0, p1). The
proof will be quite standard and we will mainly compile results which can be found
in [14], [3] and [1]. Nevertheless to the knowledge of the authors there exists no
exact statement of this result in literature. Since this interpolation result plays a
fundamental role in this paper it is indispensable to prove it in some detail.

Definition 27. Let A0 ⊂ A1 be two Banach spaces. Let 1 ≤ pj < ∞, αj ∈ R and
ηj = αj + 1

pj
for j = 0, 1. Let X denote the space

X(A0, A1) = {u : u ∈ L1
loc(R

≥0, A0), u
′ ∈ L1

loc(R
≥0, A1)}.

We shall work with the Banach spaces V = V (p0, α0, A0; p1, α1, A1) with

V = {u : u ∈ X(A0, A1), ‖u‖V < ∞},

‖u‖V = max
{
‖tα0u‖Lp0 (R≥0,A0), ‖t

α1u′‖Lp1(R≥0,A1)

}
.

These spaces have been introduced by J. L. Lions and J. Peetre [14], but

J. Bergh and J. Löfström have defined similar Banach spaces Ṽ (A, p, η) (see [3],

corollary 3.12.3). The interconnection of these spaces is that both Ṽ (A, p, η) and
V (p0, α0, A0; p1α1, A1) are norm–equivalent, if we choose ηj = αj + 1

pj
with j = 0, 1

(see [3], remark 3.14.12).

Lemma 28. Let u ∈ X(A0, A1) then there exists b ∈ A0 + A1 = A1 such that

u(t) = b +

t∫

1

u′(τ)dτ, a.e. in R
>0.

Especially u is continuous on (0,∞) with values in A1.

Proof. The proof of this lemma is standard. We refer to Adams [1], lemma 7.12,
for a similar result. �

Hence every function u ∈ X has a limit u(0+) in A0 + A1 = A1. The lemma
still holds true if R

>0 is replaced by an intervall I = [0, T ].
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Definition 29. By T = T (p0, α0, A0; p1, α1, A1) we denote the space of traces u of
functions v ∈ V = V (p0, α0, A0; p1, α1, A1) equipped with the quotient norm

‖u‖T = inf
v(0+)=u

‖v‖V .

Then T (p0, α0, A0; p1, α1, A1) is a Banach space.

Theorem 30. Let 1 ≤ pj < ∞, αj ∈ R, and ηj = αj + 1
pj

with j = 0, 1. Further

let θ and p be given by

θ =
η0

η0 + 1 − η1
,

1

p
=

1 − θ

p0
+

θ

p1
.

If η0 > 0 and η1 < 1, then

T (p0, α0, A0; p1, α1, A1) = Aθ,p.

Proof. J. Bergh and J. Löfström have shown that their trace space T (A, p, θ) is
under the stated conditions η0 > 0 and η1 < 1 equivalent to the trace space
T (p0, α0, A0; p1, α1, A1) of J. L. Lions and J. Peetre (see [3], remark 3.14.12). Fur-
ther J. Bergh and J. Löfström showed that T (A, p, θ) = Aθ,p (see [3], pg. 72-75).

�

Remark 31. Let 1 ≤ p0 < ∞, 1 < p1 < ∞ and α0 = α1 = 0, then η0 = 1
p0

> 0

and η1 = 1
p1

< 1. Hence the requirements of theorem 30 are automatically fulfilled

for T (p0, 0, A0; p1, 0, A1). This case will later be of great importance. Hence we
define:

Definition 32. For 1 ≤ pj < ∞ with j = 0, 1, let

V (p0, A0; p1, A1) := V (p0, 0, A0; p1, 0, A1),

T (p0, A0; p1, A1) := T (p0, 0, A0; p1, 0, A1).

Theorem 33. Let 1 ≤ pj < ∞ with j = 0, 1 and

θ =
p1

p1 + p1p0 − p0
,(96)

then

T (p0, A0; p1, A1) = Aθ, 1
θ

(97)

and

V (p0, A0; p1, A1) ↪→ L∞(R≥0, Aθ, 1
θ
) ∩ C(R≥0, Aθ, 1

θ
).

Furthermore

‖u‖L∞(R≥0,A
θ, 1

θ
) ≤ ‖u‖V ,(98)

‖u‖L∞(R≥0,A
θ, 1

θ
) ≤ C ‖u‖1−θ

Lp0(R≥0,A0)
‖u′‖θ

Lp1(R≥0,A1)
.(99)

Proof. In the notation of theorem 30 we have η0 = 1
p0

> 0 and η1 = 1
p1

< 1 and

θ =
η0

η0 + 1 − η1
=

1
p0

1
p0

+ 1 − 1
p1

=
p1

p1 + p1p0 − p0
.
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Furthermore

1

p
=

1− θ

p0
+

θ

p1
=

(p1 − 1) + 1

p1 + p1p0 − p0
= θ.

This proves (97).
Due to lemma 28 we can assume u ∈ C(R≥0, A0 + A1 = A1). Let u ∈ V =

V (p0, 0, A0; p1, 0, A1). For h > 0 we define τhu by (τhu)(t) = u(t + h), then τhu ∈
V ∩ C(R≥0, A0 + A1). By definition of T and theorem 30 there holds

‖u(h)‖A
θ, 1

θ

= ‖(τhu)(0)‖A
θ, 1

θ

≤ ‖τhu‖V ≤ ‖u‖V .

This proves the embedding V ↪→ L∞(R≥0, Aθ, 1
θ
) and estimate (98). In order to

show V ↪→ C(R≥0, Aθ, 1
θ
) let t ≥ 0 and h → 0 (for t = 0 let h ↓ 0), then

‖u(t + h) − u(t)‖A
θ, 1

θ

= ‖(τt+hu − τtu)(0)‖A
θ, 1

θ

≤ ‖(τt+hu − τtu)‖V

≤ max
{
‖τt+hu − τtu‖Lp0(R≥0,A0)︸ ︷︷ ︸

h
−→0

, ‖τt+hu′ − τtu
′‖Lp1(R≥0,A1)︸ ︷︷ ︸

h
−→0

}

h
−→ 0.

Still we have to prove the logarithmic convex inequality for the norms of u. This will
be done by a scaling argument. For λ > 0 let πλu be defined by (πλu)(t) = u(λt).
Then we have

‖u(0)‖A
θ, 1

θ

= ‖(πλu)(0)‖A
θ, 1

θ

≤ C ‖πλu‖V

≤ C max
{
‖πλu‖Lp0(R≥0,A0), ‖(πλ)u′‖Lp1 (R≥0,A1)

}

= C max
{
λ
− 1

p0 ‖u‖Lp0(R≥0,A0), λ
1− 1

p1 ‖u′‖Lp1(R≥0,A1)

}
.

The minimum of the right-hand side over all λ > 0 is attained at λ0 with

λ
− 1

p0
0 ‖u‖Lp0(R≥0,A0) = λ

1− 1
p1

0 ‖u′‖Lp1(R≥0,A1).

Hence

‖u(0)‖A
θ, 1

θ

≤ C ‖u‖

1− 1
p1

1
p0

+1− 1
p1

Lp0(R≥0,A0)
‖u′‖

1
p0

1
p0

+1− 1
p1

Lp1(R≥0,A1)

= C ‖u‖1−θ
Lp0(R≥0,A0)

‖u′‖θ
Lp1(R≥0,A1)

.

This implies the desired inequality for u(0). For h > 0 consider

‖u(h)‖A
θ, 1

θ

= ‖(τh)u(0)‖A
θ, 1

θ

≤ C ‖τhu‖1−θ
Lp0(R≥0,A0)

‖τ ′
h‖

θ
Lp1(R≥0,A1)

≤ C ‖u‖1−θ
Lp0(R≥0,A0)

‖u′‖θ
Lp1 (R≥0,A1)

.

�

If u is the solution of a parabolic differential equation on an interval I = [0, T ],
than u(t) is not defined for all t > 0.
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Definition 34. Let A0 ⊂A1 be two Banach spaces and I = [0, T ] with 0<T ≤∞.
Let 1 ≤ pj < ∞ with j = 0, 1. Let XI denote the space

XI(A0, A1) = {u : u ∈ L1
loc(I, A0), u

′ ∈ L1
loc(I, A1)}.

We shall work with the Banach spaces VI = V (I ; p0, α0, A0; p1, α1, A1) with

VI = {u : u ∈ XI(A0, A1), ‖u‖VI
< ∞},

‖u‖VI
= max

{
‖tα0u‖Lp0(I,A0), ‖t

α1u′‖Lp1 (I,A1)

}
.

Note that V (p0, α0, A0; p1, α1, A1) = VR≥0(p0, α0, A0; p1, α1, A1).

Theorem 35. Let 0 < T ≤ ∞, I = [0, T ], 1 ≤ pj < ∞ with j = 0, 1 and

θ =
p1

p1 + p1p0 − p0
,

then

VI (p0, A0; p1, A1) ↪→ C(I, Aθ, 1
θ
).

Furthermore

‖u‖L∞(I,A
θ, 1

θ
) ≤ C max

{
‖u‖Lp0(I,A0), ‖u‖1−θ

Lp0(I,A0)
‖u′‖θ

Lp1(I,A1)

}
.

Proof. Let u ∈ VI := VI(p0, A0; p1, A1). Let ϕ ∈ C∞
0 (R) with 0 ≤ ϕ ≤ 1, ϕ|[0, 23 T ] =

1, and ϕ|[ 45 T,∞) = 0. Let w = u ·ϕ, then w ∈ V := V (p0, A0; p1, A1). By theorem 33

we conclude w ∈ C(R≥0, Aθ, 1
θ
), hence u ∈ C([0, 2

3T ], Aθ, 1
θ
). If we substitute u by

u with u(t) := u(T − t) and w by w with w = u · ϕ, we get u ∈ C([ 13T, T ], Aθ, 1
θ
).

Altogether we have proven u ∈ C(I, Aθ, 1
θ
), which implies VI → C(I, Aθ, 1

θ
) (as a

linear mapping). Furthermore we know that

‖u‖L∞(I,A
θ, 1

θ
) ≤ ‖w‖L∞([0, T

2 ],A
θ, 1

θ
) + ‖w‖L∞([ T

2 ,T ],A
θ, 1

θ
)

≤ ‖w‖V + ‖w‖V .

We will now show that the right-hand side is bounded independently of u. For
this we will only examine ‖w‖V , for ‖w‖V can be handled by exchanging w by w
in the following calculations. Recall that ‖u‖VI

≤ 1, so by lemma 28 there holds
‖u′‖L∞(I,A1) ≤ C‖u‖VI

.

‖w‖Lp0(R≥0,A0) = ‖u · ϕ‖Lp0(R≥0,A0) ≤ ‖ϕ‖∞‖u‖Lp0(I,A0) ≤ Cϕ ‖u‖Lp0(I,A0).

‖w′‖Lp1(R≥0,A1) = ‖(u · ϕ)′‖Lp1 (R≥0,A1)

≤ ‖u′ · ϕ‖Lp1(R≥0,A1) + ‖u · ϕ′‖Lp1(R≥0,A1)

= ‖u′ · ϕ‖Lp1(R≥0,A1) + ‖u · ϕ′‖Lp1(I,A1)

≤ ‖ϕ‖∞ ‖u′‖Lp1(I,A1)︸ ︷︷ ︸
≤‖u‖VI

+‖ϕ‖1,∞ ‖u‖Lp1(I,A1)︸ ︷︷ ︸
≤C ‖u‖VI

≤
(
1 + 2 C ‖ϕ‖1,∞

)
‖u‖VI

≤ Cϕ ‖u‖VI
.
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Hence

‖w‖V ≤ ‖w‖1−θ
Lp0(R≥0,A0)

‖w′‖θ
Lp1 (R≥0,A1)

≤ Cϕ‖u‖
1−θ
Lp0(I,A0)

‖u‖θ
VI

≤ Cϕ‖u‖VI
.

This shows on the one hand that VI → C(I, Aθ, 1
θ
) and on the other hand that

‖u‖L∞(I,A
θ, 1

θ
) ≤ ‖w‖L∞([0, T

2 ],A
θ, 1

θ
) + ‖w‖L∞([ T

2 ,T ],A
θ, 1

θ
)

≤ Cϕ‖u‖
1−θ
Lp0(I,A0)

‖u‖θ
VI

= Cϕ max
{
‖u‖Lp0(I,A0), ‖u‖

1−θ
Lp0(I,A0)

‖u′‖θ
Lp1(I,A1)

}
.

This proves the theorem. �
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non-Newtonian incompressible fluids. Commun. Partial Differ. Equations, 19(11-12):1763–
1803, 1994.
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