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Abstract. Existence and regularity properties of solutions for the evolutionary
system describing unsteady flows of incompressible fluids with shear dependent
viscosity are studied. The problem is considered in a bounded, smooth domain of

R3 with Dirichlet boundary conditions. The nonlinear elliptic operator, which is
related to the stress tensor, has p structure. The paper deals with the case p ≥ 2,
for which the existence of weak solutions is proved. If p ≥ 9

4
then a weak solution

is strong and unique among all weak solutions.

1. Introduction and setting of the problem. This paper deals with
unsteady flows of an incompressible fluid in a bounded domain Ω ⊂ Rd,
d > 1 described by the system of equations

div v = 0 ,

ρ
∂v
∂t
− div TE + ρvk

∂v
∂xk

= −∇π + ρf ,
(1.1)

where v = (v1, v2, . . . , vd) is the velocity, π represents the pressure, ρ is a
positive constant determining the density of a material, f = (f1, f2, . . . , fd)
stands for the given external body forces and TE denotes the extra stress
tensor.
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Let a finite T > 0 be given. Then all functions are evaluated at (t, x),
where t ∈ [0, T ] and x ∈ Ω. We also use the usual summation convention
throughout the whole text. Let us further denote by D the symmetric part
of the velocity gradient; i.e., D = D(v) ≡ 1

2

[
(∇v) + (∇v)T

]
. We consider a

constitutive relation for TE of the form

TE = T(D) . (1.2)

Before specifying precise assumptions for T, let us first think of the following
four examples: for p > 1 and ν0 > 0 we set

(a) TE = 2ν0|D|p−2D ,

(b) TE = 2ν0(1 + |D|2) p−2
2 D ,

(c) TE = 2ν0(1 + |D|)p−2D ,

(d) TE = 2ν0(1 + |D|p−2)D ,

(1.3)

where |D| denotes the usual Euclidean matrix-norm.
On the one hand, the models (a)–(d) have some joint properties. Firstly,

for p = 2 all formulas reduce to the Stokes law, i.e., TE = 2ν0D, and (1.1)
turns into the Navier-Stokes system, which is a model for Newtonian fluids.

Secondly, we can easily construct scalar potentials to TE in (1.3) (a)–(d).
In fact, all examples for TE can be written in the form

TE = 2ν0µ(|D|2)D , (1.4)

where µ : R+
0 → R+

0 is the generalized viscosity function. The corresponding
potential Φ : R+

0 → R+
0 to TE given in (1.4) is defined by

Φ(|D|2) ≡ ν0

∫ |D|2
0

µ(s) ds ,

and we have for r, s = 1, 2, . . . , d

Trs(·) = ∂rsΦ(·) ≡ ∂Φ(·)
∂Drs

, Φ(0) = ∂rsΦ(0) = 0 .

Considering a simple shear flow, i.e., v = (v1(x2), 0, 0), the quantity κ ≡
|v′1(x2)| (= 2|D| in the considered motion) is called shear rate. This is
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why the fluids constituted by (1.3) are sometimes named fluids with shear-
dependent viscosity. Models belonging to this class of non-Newtonian fluid
mechanics are frequently used in engineering practice, as discussed in Málek,
Rajagopal, Růžička [13], for example.

Finally, it is worth remarking that all models (a)–(d) in (1.3) satisfy the
p-coercivity condition, i.e.,

TE ·D ≥ 2ν0|D|p (1.5)

and they have (p − 1) growth, which means |TE | ≤ c(1 + |D|)p−1, c > 0.
On the other hand, despite their similar structure, the graphs of µ(|D|2)
differ dramatically from each other (cf. Figures 1.1 and 1.2 in [11]). The
different asymptotic behaviour of µ(s) as s→ 0+ or s→∞, makes the class
of investigated models robust and therefore very useful.

We complement the equations (1.1) by an initial condition

v(0, ·) = v0(·) in Ω , (1.6)

and by Dirichlet boundary conditions

v(t, x) = 0 for all (t, x) ∈ [0, T )× ∂Ω . (1.7)

Simpler than (1.7) are space-periodic boundary conditions. In that case, Ω
is a d-dimensional cube with sides of finite length L > 0 and

v, π are periodic with period L in each variable xi , i = 1, 2, . . . , d . (1.8)

By the Problem (NS-Dir)p, we will mean the problem (1.1), (1.2), (1.6),
(1.7), while we will call the problem (1.1), (1.2), (1.6), (1.8) the Problem
(NS-Per)p. Since no assumptions for T in (1.2) have been specified yet, one
should have in mind the examples (1.3) (a)–(d).

Our long-lasting aim is to study the global-in-time existence of (weak)
solutions to both the Problem (NS-Dir)p and the Problem (NS-Per)p, and
to investigate their further qualitative properties1 in dependence on the pa-
rameter p.

Regarding the Problem (NS-Dir)p, the first mathematical investigations
go back to Ladyzhenskaya’s lecture at the International Mathematical Con-
gress in 1966, where she proposed, among others, to study the system (1.1),

1Here, however, we discuss the questions of uniqueness and regularity of weak solutions
only.
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(1.6), (1.7) and (1.3)(d) with p = 4. Later on these first results were ex-
tended, and presented in further contributions of Ladyzhenskaya; cf. [5], [6]
and [7]. Combining monotone operator theory and compactness arguments,
she proved the existence of weak solutions to all models (a)–(d) in (1.3) if
p ≥ 1+ 2d

d+2 and their uniqueness if p ≥ d+2
2 . See also Lions [8] for a compa-

rable proof of the same results. Recently, Amann [1] showed the existence
of regular (classical) solutions to the Problem (NS-Dir)p provided that the
data f and v0 are small and assuming that the tensor function T in (1.2)
satisfies

∂rsT(0) = const. > 0 .

Thus, in particular, these results are related to the models (b), (c) in (1.3)
if p ≥ 1 and to (d) if p ≥ 2.

More results are known about the Problem (NS-Per)p due to a series
of papers Bellout, Bloom, Nečas [3] (see also Bellout, Bloom, Nečas [2]),
Málek, Nečas, Růžička [9], Málek, Rajagopal, Růžička [13] and finally the
monograph Málek, Nečas, Rokyta, Růžička [11] which will be sometimes
used as a reference for detailed explanations and proofs of some assertions.

Excluding the example (a) in (1.3) for p > 2, the following has been
proved in these publications:

the existence of a weak solution for p ∈ ( 3d
d+2 , 2d

d−2 ) if d = 3 , 4 ;

the existence of a strong solution for p ≥ 1 + 2d
d+2 if d ≥ 3 ;

for p > 1 if d = 2 ;

uniqueness of the weak solution for p ≥ 1 + 2d
d+2 if d ≥ 2 .

It is natural to ask whether the same results are valid for the Problem (NS-
Dir)p, too. Since the superquadratic case (p > 2) and the subquadratic case
(p < 2) require different approaches, we investigate the former in this paper,
and we devote to the latter a forthcoming paper. We also concentrate, mainly
for methodological reasons, on three-dimensional situations, i.e., Ω ⊂ R3.
If d = 2 and p ≥ 2, the existence and uniqueness of weak solutions follows
already from Ladyzhenskaya [5], [6] and [7] and Lions [8], while the regularity
(i.e., the existence of the unique strong solution) can be obtained following
the lines of the present paper. Finally, we also restrict ourselves to the
very interesting2 and most complicated case p ∈ [2, 3). The case p ≥ 3 will
require a slightly different technique which we intend to investigate later.

2The interest in studying the case p ∈ [2, 3) is based on the fact that up to the present
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It might be worth remarking that if the nonlinearity T had a potential Φ
depending on the modulus of the full velocity gradient |∇v| and not only on
the modulus of the symmetric velocity gradient |D(v)|, then the results in
the preprint [10] hold not only for a larger set of parameters p (p ∈ [2, 6)), but
also provide stronger information on regularity of v. We want to emphasize,
however, that although the preprint [10] is formulated for models where the
potential Φ depends on |D|, it holds only for cases when the potential Φ of
the nonlinearity T depends on |∇v|, since Lemma 7.18 in [10] is correct only
in this case and wrong if Φ depends on |D|.

Before formulating the main result, we will define some useful function
spaces and notions. Let

(
X(Ω), ‖ · ‖X(Ω)

)
be a Banach space of scalar func-

tions defined in Ω. Then X(Ω)3 (respectively X(Ω)3×3 ) represents the
space of vector-valued (respectively tensor-valued) functions whose compo-
nents belong to X(Ω). Let further p, q > 1 and k > 0. Then

(
Lp(Ω), ‖ · ‖p

)
denotes the usual Lebesgue spaces and

(
W k,p(Ω), ‖·‖k,p

)
is used for standard

Sobolev spaces. Finally, by

(
Lq((0, T );X(Ω)),

( ∫ T

0

‖ · ‖qX(Ω)dt
)1/q)

we denote Bochner spaces. Sometimes we write I instead of (0, T ) and QT

instead of I ×Ω. Also as usual, D(Ω) denotes the space of smooth functions
with compact support in Ω. We further define

V ≡
{
ψψψ ∈ D(Ω)3 : divψψψ = 0

}
,

H ≡ the closure of V with respect to the ‖ · ‖2–norm ,

Vp ≡ the closure of V with respect to the ‖∇ · ‖p–norm .

In order to give the definition of weak and strong solutions to the Problem
(NS-Dir)p, we will specify assumptions on the tensor function T from (1.2).

results, the existence of weak solutions to the Problem (NS-Dir)p was known only for
p ≥ 11/5 and for the special linear case when p = 2 (this means for the Navier-Stokes
equations). The results presented here cover this gap, providing the existence of weak
solutions to the Problem (NS-Dir)p for p ≥ 2. In addition, we also give information about
the integrability of second derivatives if p ≥ 9/4, which is important for the investigation
of large-time behavior in the range p ∈ [9/4, 5/2), since in this range this information is
essential while if p ∈ [5/2,∞) the global existence of a finite-dimensional attractor can
be proved using L∞(0,∞; W 1,p) regularity only, which is known if p ≥ 5/2 for a weak
solution (see [12] for more details).
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Let R3×3
sym ≡ {D ∈ R3×3 : Dij = Dji, i, j = 1, 2, 3}. We assume the

existence of a potential Φ : R+
0 → R+

0 and constants C1, C2 > 0 such that
for some p > 1 and for all r, s, m, n = 1, 2, 3, B,D ∈ R3×3

sym

Trs(D) = ∂rsΦ(|D|2) , Φ(0) = ∂rsΦ(0) = 0 , (1.9)

∂ij∂klΦ(|D|2)BijBkl ≥ C1(1 + |D|)p−2|B|2 , (1.10)∣∣∂rs∂mnΦ(|D|2)
∣∣ ≤ C2(1 + |D|)p−2 . (1.11)

Remark 1.12. It is easy to check that examples (b)–(d) in (1.3) satisfy
(1.9)–(1.11), while the analogy of the condition (1.10) for the example (a)
reads

∂ij∂klΦ(|D|2)BijBkl ≥ C1|D|p−2|B|2 .

We do not consider this case in this paper.
Definition 1.13. A function v is said to be a weak solution to the Problem
(NS-Dir)p if and only if v ∈ L∞(I;H)∩Lp(I;Vp) and the weak formulation∫

QT

[
−v·∂ϕϕϕ

∂t
+Tij(D(v))Dij(ϕϕϕ)−vkv·

∂ϕϕϕ

∂xk

]
dx dt =

∫
QT

f ·ϕϕϕ dx dt+
∫

Ω

v0·ϕϕϕ dx

(1.14)
is fulfilled for all ϕϕϕ ∈ D(−∞, T ;V).
Definition 1.15. A function v is said to be a strong solution to the Problem
(NS-Dir)p if and only if

v ∈ C(I;H) ∩ L∞(I;Vp) ∩ L
2

p−1 (I;W 2, 6
p+1 (Ω)3) ,

∂v
∂t
∈ L2(I;L2(Ω)3) ,

and for all ϕϕϕ ∈ Vp and almost every t ∈ I

(∂v(t)
∂t

,ϕϕϕ
)
+

∫
Ω

Tij(D(v(t)))Dij(ϕϕϕ) dx+
(
vk(t)

∂v(t)
∂xk

,ϕϕϕ
)

=
(
f(t),ϕϕϕ

)
. (1.16)

The brackets (h,g) stand for
∫
Ω

h · g dx, where h · g ∈ L1(Ω).
Now we formulate the main result of this paper.

Theorem 1.17. Let Ω ⊂ R3 be a bounded domain, ∂Ω ∈ C3. Let p ∈ [2, 3),
v0 ∈ Vp and f ∈ L2(I;L2(Ω)3). Assume that T in (1.2) satisfies (1.9)–(1.11).
Then there exists a weak solution v to the Problem (NS-Dir)p. Moreover, if

p ≥ 9
4

=
11
5

+ 0.05 (1.18)
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then the solution is strong and unique, and for all Ω0 ⊂⊂ Ω and 0 ≤ t1 <
t2 ≤ T ∫ t2

t1

∫
Ω0

(1 + |D(v)|)p−2|D(∇v)|2dx dt <∞ . (1.19)

In particular, v ∈ L2(I;W 2,2
loc (Ω)3). The tangential derivatives ∂v

∂τr , r = 1, 2,
satisfy an estimate analogous to (1.19). Thus, ∇ ∂v

∂τr ∈ L2(I;L2(Ω)3×3).

Remark 1.20. By the results in [7] and [8], the existence of weak solu-
tions is obtained for p ≥ 11

5 . Thus Theorem 1.17 fills the gap between 2
and 11

5 . Further, for p satisfying (1.18) we obtain regularity properties for
v. However, these results are slightly worse than those for the Problem
(NS-Per)p, where strong solutions exists for all p ≥ 11

5 and belong to the
space L2(I;W 2,2(Ω)3). It might be useful to emphasize that we are able
to strengthen our results significantly if the nonlinearity T comes from a
potential depending on the modulus of the full velocity gradient of v. More
precisely, if T = ∂Φ(|∇v|), then the weak solutions exist for p ∈ [2, 6), and
the existence of strong solutions is guaranteed for p ∈ ( 20

9 , 6). In addition,
the strong solutions belong to Lp′(I;W 2,p′(Ω)3), p′ = p/(p − 1); see [10].
We want to warn the reader before possible confusions: the preprint [10] is
formulated for T = ∂Φ(|D|); however, due to the wrong proof of Lemma
7.18 it is valid only for T of the type T = ∂Φ(|∇v|).

The proof of Theorem 1.17 is split into several sections. In the next section
we clarify, using some formal arguments, the main difficulty of the problem
connected with low regularity of the pressure. This difficulty is overcome by
constructing an appropriate twofold approximation of the original problem
based on both the mollification of the convective term vεk

∂v
∂xk

and on a
quadratic approximation of the potential Φ, denoted by ΦA. Section 3 deals
with the existence and regularity of the weak solution to the approximate
problem. In Section 4 we carry out the limiting process from ΦA to Φ, while
in Section 5 we let ε→ 0 and we finally obtain the results stated in Theorem
1.17. The appendix contains some helpful assertions.

2. Definition of the approximate problem. We start with a lemma
collecting some consequences of the assumption (1.9)–(1.11). The proof can
be found for example in Málek, Nečas, Rokyta, Růžička [11], Chapter 5,
Lemma 1.19 and Lemma 1.35.

Lemma 2.1. Let T and Φ satisfy (1.9)–(1.11). Assume that p ≥ 2. Then
there exist Ci, i = 3, . . . , 7, such that for all B ∈ R3×3

sym

T(B) ·B ≥ C3(1 + |B|p−2)|B|2 , (2.2)



264 j. málek, j. nečas, and m. r̊užička∣∣T(B)
∣∣ ≤ C4(1 + |B|)p−1 , (2.3)

C5(1 + |B|p−2)|B|2≤C3( 1
2 + 1

p |B|
p−2)|B|2≤Φ(|B|2)≤C6(1+|B|)p(2.4)

and for all B, D ∈ R3×3
sym(

T(B)−T(D)
)
·
(
B−D

)
≥ C7|B−D|2 . (2.5)

Learning from the methods used for the Problem (NS-Per)p, we start with
a mollification of the convective term. Let ω ∈ D(R3) be a usual mollification
kernel with support in B1(0) ≡ {x ∈ R3 : |x| < 1} and

∫
R3 ω dx = 1. For

every ε > 0 we define ωε = 1
ε3 ω(x

ε ) and we put vε ≡ v ∗ ωε; i.e.,

vε(x) =
1
ε3

∫
R3

ω
(x− y

ε

)
v(y) dy .

It is easy to observe that

‖vε‖2,2 ≤
1
ε2
‖v‖2 , (2.6)

and for v ∈ Lp(Ω), always ‖vε‖p ≤ ‖v‖p.
Now, let us consider3 the Problem (NS-Dir) ε

p : to find (v, π) = (vε, πε)
such that

div v = 0 in QT ,

∂v
∂t
− div T(D(v)) + vεk

∂v
∂xk

= −∇π + f in QT ,

v(0, ·) = v0(·) in Ω and v = 0 at I × ∂Ω ,

(2.7)

where T satisfies (1.9)–(1.11).
Now we formally derive a priori estimates. First, we multiply equation

(2.7)2 by v. Integrating over QT , using (2.2), partial integration and a
p-version of Korn’s inequality (see (6.2) in the appendix), we obtain

‖v(t)‖22 + C3K
2
2

∫ t

0

‖∇v‖22 dτ + 2C3 Kp
p

∫ t

0

‖∇v‖pp dτ ≤ c(f ,v0) , (2.8)

3We put for simplicity ρ ≡ 1 in the sequel, because the size of the constant density
plays no role in the whole analysis.
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where c(f ,v0) denotes a generic constant depending only on the data; in
case of (2.8) c(f ,v0) = ‖v0‖22 + c‖f‖22. The estimate (2.8) is independent of
ε, and we have

v ∈ L∞(I;H) ∩ Lp(I;Vp) . (2.9)

Multiplying (2.7)2 by ∂v
∂t (which is also divergence-free and vanishing at ∂Ω),

integrating over Qt and using the fact that∫
Ω

Tij(D(v))Dij(
∂v
∂t

) dx =
d

dt

∫
Ω

Φ(|D(v)|2) dx ,

along with (2.4) we get∫ t

0

‖∂v
∂t
‖22 dτ + Kp

p‖∇v(t)‖pp ≤ c(f ,v0) +
∫

QT

|vε|2|∇v|2 dx dt ≡ J . (2.10)

Now, since v satisfies (2.9) it is possible to prove that

J ≤ c(f ,v0) if p ≥ 12
5

, (2.11)

and

J ≤ c (
1
ε
, f ,v0) if p ∈ [2,

12
5

) . (2.12)

Indeed, using for p ∈ [ 125 , 3) the interpolation inequality

‖v‖ 2p
2−p
≤ ‖v‖

5p−12
5p−6

2 ‖v‖
6

5p−6
3p

3−p

we have∫
Ω

|vε|2|∇v|2dx ≤ ‖∇v‖2p‖vε‖22p
p−2
≤ c‖∇v‖p+

p(16−5p)
5p−6

p ‖v‖2
5p−12
5p−6

2

≤ c‖v‖2
5p−12
5p−6

2 ‖∇v‖p
16−5p
5p−6

p ‖∇v‖pp =: h ‖∇v‖pp .

(2.13)

Observe that 16−5p
5p−6 ≤ 1 if p ≥ 11

5 . Thus due to (2.9) and h ∈ L1(0, T ) we can
derive (2.11) for p ∈ [ 125 , 3) from (2.10) and Gronwall’s lemma. The estimate
(2.12) is a consequence of (2.6) and the imbedding W 2,2(Ω) ↪→ L∞(Ω). So
we have from (2.10)∫ t

0

‖∂v
∂t
‖22 dτ + ‖∇v(t)‖pp ≤

{
c ( 1

ε , f ,v0) if p ∈ [2, 12
5 ) ,

c(f ,v0) if p ≥ 12
5 .

(2.14)
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In order to pass to the limit in the nonlinear term given by T (at least for
p ∈ [2, 11

5 )) and in order to obtain higher regularity properties (for p ≥ 11
5 ) we

need more information about ∇v. For the Problem (NS-Per)p we used −∆v
as a test function which is divergence-free, but in the case of the Problem
(NS-Dir)p the term −∆v does not vanish at ∂Ω.

Let Ω′ ⊂ Ω̄′ ⊂ Ω and let ξ ∈ D(Ω) be a cut-off function such that ξ ∈ [0, 1]
in Ω′. Now, we multiply (2.7)2 by −∆vξ2, a test function vanishing at the
boundary, but not being divergence-free. Thus the pressure π enters the
picture. Using the divergence-free constraint we have −

∫
Ω
∇π∆vξ2 dx =∫

Ω
π∆v∇ξ2 dx.
In order to clarify a key point that leads to the final approximation, we

will consider only the main terms, “forgetting” cut-off functions. This yields

1
2‖∇v(t)‖22 +

∫ t

0

∫
Ω

∂ij∂klΦ(|D(v)|2)Dij(∇v) ·Dkl(∇v) dx dτ

≤
∫ t

0

∫
Ω

|f ·∆v|+ |vε| |∇v||∆v| dx dτ +
∫ t

0

∫
Ω

|π||∆v| dx dτ .

(2.15)

By (1.10) and Young’s inequality, we get

1
2‖∇v(t)‖22 +

∫ t

0

‖∇(2)v‖22 dτ ≤ c(δ)
∫ T

0

‖f‖22 dt + c(δ)
∫ t

0

∫
Ω

|vε|2|∇v|2dx dτ

+ δ

∫ t

0

‖∆v‖22 dτ +
∫ t

0

∫
Ω

|π| |∆v| dx dτ (2.16)

(2.12)

≤
(2.11)

c (
1
ε
, f ,v0) +

∫ t

0

∫
Ω

|π| |∆v| dx dτ + δ

∫ t

0

‖∆v‖22 dτ .

Since div T(D(·)) maps Lp(I;Vp) → Lp′(I;V ∗p ), p′ = p
p−1 , we see that π ∈

Lp′(QT ), where p′ ≤ 2. This fact causes the main difficulty, because we have
no information about ∆v in Lp(QT ). If we estimate∫ t

0

∫
Ω

|π| |∆v| dx dτ ≤ c(δ)
∫ t

0

‖π‖22 dτ + δ

∫ t

0

‖∇(2)v‖22 dτ ,

then we need that π ∈ L2(QT ) at least on the level of approximations. In or-
der to obtain this, we approximate the p-potential Φ by quadratic potentials
ΦA in the following way: for A > 1 and B ∈ R3×3

sym we define

ΦA(|B|2) =
{

Φ(|B|2) if |B| ≤ A ,

α2|B|2 + α1|B|+ α0 if |B| > A ,
(2.17)
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where α0, α1, α2 are such that ΦA ∈ C2(R+
0 ). This gives

α0 = Φ(A2) + 2Φ′′(A2)A4 − Φ′(A2)A2,

α1 = −4Φ′′(A2)A3, α2 = 2Φ′′(A2)A2 + Φ′(A2) .
(2.18)

Defining TA by
TA(B) ≡ ∂ΦA(|B|2) , (2.19)

we see (compare with (2.23)1 below) that TA has linear growth and
div TA(D(·)) maps L2(I;V2) into L2(I;V ∗2 ). Thus we finally come to the
definition of the approximate problem.
Definition 2.20. (the Problem (NS-Dir) ε,A

p ) For given ε > 0 and A > 1,
we look for v = vε,A and π = πε,A solving the system

div v = 0 in QT ,

∂v
∂t
− div TA(D(v)) + vεk

∂v
∂xk

= −∇π + f in QT ,

v(0, ·) = v0(·) in Ω and v = 0 at I × ∂Ω .

(2.21)

We will need several inequalities connected with the potential ΦA, which
we summarize in the following lemma.

Lemma 2.22. Assume that (1.9)–(1.11) hold. Then ΦA, A > 1, given by
(2.17), (2.18) and TA given by (2.19) satisfy (for i, j, k, l, r, s = 1, 2, 3 and
all B,D ∈ R3×3

sym)

|∂ΦA(|D|2)| ≤ C̃1(A)(1 + |D|) , |∂2ΦA(|D|2)| ≤ C̃2(A) ,

∂ijΦA(|D|2)Dij ≥ C3|D|2 , C8|D|2 ≤ ΦA(|D|2) ≤ C9(1 + |D|2) p
2 ,

(2.23)

∂ij∂klΦA(|D|2)BijBkl ≥ C10

{
(1 + |D|)p−2|B|2 if |D| ≤ A ,

(1 + A)p−2|B|2 if |D| > A ,
(2.24)

|∂rsΦA| ≤ C11(1 + |ΦA|)
p−1

p , (2.25)

|∂kl∂rsΦA(|D|2)| ≤ C12

{
(1 + |D|)p−2 if |D| ≤ A ,

(1 + A)p−2 if |D| > A ,
(2.26)

1 + |∂ΦA(|D|2)| ≥ C13

{
(1 + |D|)p−1 if |D| ≤ A ,

(1 + A)p−1 if |D| > A .
(2.27)

Proof. All assertions are evident if |D| ≤ A. Therefore we assume |D| > A
in what follows. We first observe that (1.10) yields (for all B,D ∈ R3×3

sym)

4Φ′′(|D|2)(D ·B)2 + 2Φ′(|D|2)|B|2 ≥ C1(1 + |D|)p−2|B|2 .
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In particular, for B = 1√
3
I and D = A√

3
I we obtain

4Φ′′(A2)A2 + 2Φ′(A2) ≥ C1(1 + A)p−2. (2.28)

Similarly, from (2.2), we have

2Φ′(|D|2) ≥ C3(1 + |D|p−2) ,

and C3 is given by C3 = C1
2(p−1) (cf. [11], Chapter 5, Lemma 1.19). Choosing

D = A√
3
I gives

2Φ′(A2) ≥ C3(1 + Ap−2) . (2.29)

On the other hand, (1.11) and (2.3) imply

4Φ′′(|D|2)|D|2 + 2Φ′(|D|2) ≤ C̃2(1 + |D|)p−2. (2.30)

2Φ′(|D|2)|D| ≤ C4(1 + |D|p−1). (2.31)

As

∂ijΦA(|D|2) = 2α2Dij + α1
Dij

|D| ,

∂ij∂rsΦA(|D|2) = 2α2δirδjs + α1
δirδjs

|D| − α1
DijDrs

|D|3 ,

(2.32)

we see that (2.23)1−3, (2.24) and (2.26) are consequences of (2.28)–(2.32).
Let us verify (2.24), for example. We have (|D| > A)

∂ij∂rsΦA(|D|2)BijBkl = 2α2|B|2 + α1
|B|2
|D| − α1

(B ·D)2

|D|3 (2.33)

=
(
4Φ′′(A2)A2 + 2Φ′(A2)

)
|B|2 − 4Φ′′(A2)A3 |B|2

|D| + 4Φ′′(A2)A3 (B ·D)2

|D|3 .

Then either Φ′′(A2) ≥ 0 or Φ′′(A2) < 0. If Φ′′(A2) ≥ 0, we rewrite (2.33) as

2Φ′(A2)|B|2 + 4Φ′′(A2)
A3

|D|3
(
|B|2|D|2(|D| −A)2 + A(D ·B)2

)
≥ 2Φ′(A2)|B|2

(2.29)

≥ C3(1 + Ap−2)|B|2 . (2.34)
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If Φ′′(A2) is negative then (2.33) can be written as

(
4Φ′′(A2)A2 + 2Φ′(A2)

)
|B|2 − 4Φ′′(A2)

A3

|D|3
(
|B|2|D|2 − (B ·D)2

)
(2.28)

≥ C1(1 + A)p−2|B|2 ≥ C1

2
(1 + Ap−2)|B|2 ≥ C3(1 + Ap−2)|B|2,

(2.35)

where we used the relation between C1 and C3 and the simple inequality
(1 + A)p−2 ≥ 1

2 (1 + Ap−2) valid for p ≥ 2. Thus, we conclude that (2.24)
holds independently of the sign of Φ′′(A2). Moreover, (2.33)–(2.35) with
B = D leads to

4Φ′′(A2)A2 + 2Φ′(A2) ≥ C3(1 + Ap−2) . (2.36)

Next, (2.4) yields (2.23)4. Indeed, we have

ΦA(|D|2) = 2Φ′′(A2)A2(|D|2 − 2A|D|+ A2) + Φ′(A2)(|D|2 −A2) + Φ(A2).

If Φ′′(A2) < 0 we rewrite and estimate the right-hand side as

(
2Φ′′(A2)A2 + Φ′(A2)

)(
|D|2 −A2

)
+ 4Φ′′(A2)A3(A− |D|) + Φ(A2)

(2.36)

≥
(2.4)

C3

2
(1 + Ap−2)(|D|2 −A2) + C3(

1
2

+
Ap−2

p
)A2

=
C3

2
|D|2 +

C3

2
Ap−2(|D|2 −A2) +

C3

p
Ap ≥ C3

2
|D|2 ,

while if Φ′′(A2) ≥ 0 we have

ΦA(|D|2) = 2Φ′′(A2)A2(|D| −A)2 + Φ′(A2)(|D|2 −A2) + Φ(A2)
(2.29)

≥
(2.4)

C3

2
(1 + Ap−2)(|D|2 −A2) + C3(

1
2

+
Ap−2

p
)A2 ,

which gives the same conclusion as above; i.e., the lower bound in (2.23)4 is
proved. The upper bound is clear. We also have

∂ijΦA(|D|2) =
[(

4Φ′′(A2)A2 + 2Φ′(A2)
)(

1− A

|D|
)

+ 2Φ′(A2)
A

|D|
]
Dij .
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Since all terms in front of Dij are positive we obtain (A > 1)

|∂ΦA(|D|2)| = 2Φ′(A2)A +
(
4Φ′′(A2)A2 + 2Φ′(A2)

)
(|D| −A)

(2.29)

≥
(2.36)

C3(1 + Ap−2)A ≥ C13(1 + A)p−1 .

This proves (2.27). Finally, to prove (2.25) for |D| > A, it is enough (ΦA ∈
C2(R+

0 )) to show that for F (|D|) ≡
∣∣∂ΦA(|D|2)

∣∣p(1+ΦA(|D|2)
)1−p the limit

lim|D|→∞ F (|D|) is finite. However,

F (|D|) =

∣∣2α2D + α1
D
|D|

∣∣p(
1 + α0 + α1|D|+ α2|D|2

)p−1 ≤
(2α2)p|D|2−p

(
1 + |α1|

2α2|D|
)p

αp−1
2

(
1+α0

α2|D|2 + α1
α2|D| + 1

)p−1 .

Therefore,

lim
|D|→∞

F (|D|) ≤ 2pα2
1

Ap−2

(2.30)

≤ 2C̃2 .

3. On strong solutions to the Problem (NS-Dir) ε,A
p . The goal of

this section is to prove the existence of a strong solution to the Problem
(NS-Dir) ε,A

p provided that ε > 0 and A > 1 are fixed. We say that a couple
(v, π) ≡ (vε,A, πε,A) is a strong solution to the Problem (NS-Dir) ε,A

p if

v ∈ L∞(I;V2) ∩ L2(I;W 2,2(Ω)3) ,

∂v
∂t
∈ L2(I;L2(Ω)3) , π ∈ L2(I;L2(Ω)) ,

(3.1)

and the weak formulation

(
∂v(t)

∂t
,ϕϕϕ) +

∫
Ω

TA
ij (D(v(t)))Dij(ϕϕϕ) dx + (vεk(t)

∂v(t)
∂xk

,ϕϕϕ)

= (π(t),divϕϕϕ) + (f(t),ϕϕϕ) (3.2)

is fulfilled for all ϕϕϕ ∈ W 1,2
0 (Ω)3 and almost all t ∈ I. In fact, due to the

linear growth of TA and (3.1), a strong solution (v, π) satisfies the equation
(2.20)2 almost everywhere in QT .

A couple (v, π) = (vε,A, πε,A) will be called a weak solution to the Problem
(NS-Dir) ε,A

p if v ∈ L∞(I;V2) and (3.1)2−3 and (3.2) are valid.
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Theorem 3.3. Let Ω ⊂ R3 be a bounded domain, ∂Ω ∈ C3. Let v0 ∈ Vp

and f ∈ L2(I;L2(Ω)3) and p ≥ 2. Then, for all ε > 0 and A > 1 there exists
a strong solution (v, π) = (vε,A, πε,A) to the Problem (NS-Dir) ε,A

p such that
v is unique in the class of weak solutions of the Problem (NS-Dir) ε,A

p and it
holds that

‖v‖L∞(I;H) + ‖v‖L2(I;V2) ≤ c(f ,v0) (3.4)

‖∂v
∂t
‖2L2(I;L2(Ω)3) + ‖ΦA(|D(v)|2)‖L∞(I;L1(Ω))

≤ c(f ,v0) +
∫

QT

|vε|2|∇v|2dx dt ≤ c (
1
ε
, f ,v0) (3.5)

‖π‖2L2(I;L2(Ω)) ≤
∫ T

0

‖∂ΦA(|D(v)|2)‖22 dt +
∫

QT

|vε|2|∇v|2dx dt + c(f)

≤ c(
1
ε
, A, f ,v0) . (3.6)

Moreover,

‖∇(2)v‖2L2(I;L2(Ω)3×3) ≤ c(
1
ε
, A, f ,v0), (3.7)

and (2.20)2 holds almost everywhere in QT .

Proof. The proof consists of two parts. While the first one, including the
existence of a unique weak solution, is standard (and we only sketch the
proof), the second one, proving the regularity result (3.7), uses methods
that are not so common, and we will give a detailed proof.

Using the Galerkin approach we can justify the a priori estimates (3.4)
and (3.5), which are derived in the same way as (2.8) and (2.12). By (2.6)
and (3.4) vεk

∂v
∂xk
∈ L2(I;L2(Ω)3) . Due to (2.17), the operator

−div TA(D(·)) : L2(I;W 1,2
0 (Ω)3)→ L2(I; (W 1,2

0 (Ω)3
)∗)

is a strongly monotone operator. Thus combining the Galerkin method with
the monotone operator theory we can prove the existence of a weak solution
v = vε,A satisfying (3.4) and (3.5). See Lions [8] for details, for example.

Defining F ∈ L2(I;
(
W 1,2

0 (Ω)3
)∗) by

〈F(t),ϕϕϕ〉 ≡ (
∂v(t)

∂t
,ϕϕϕ) +

∫
Ω

TA
ij (D(v(t)))Dij(ϕϕϕ) dx

+ (vεk(t)
∂v(t)
∂xk

,ϕϕϕ)− (f(t),ϕϕϕ)
(3.8)
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we see that for almost all t ∈ I and all ϕϕϕ ∈ V2, 〈F(t),ϕϕϕ〉 = 0. By De Rham’s
theorem and Theorem 6.7 there exists π ∈ L2(I;L2(Ω)),

∫
Ω

π dx = 0 such
that

〈F(t),ϕϕϕ〉 = 〈∇π(t),ϕϕϕ〉 ∀ϕϕϕ ∈W 1,2
0 (Ω)3 .

From (3.8) and known a priori estimates, we obtain (3.6), where we also
used (2.23)1. Thus the first part of the proof is finished.

In the rest of this section we will focus on (3.7), having at our disposal
(3.4)–(3.6) and the weak formulation (3.2). The proof of (3.7) consists, as
usual, of interior regularity and regularity near the boundary. In the latter
case we will not flatten the boundary. We prefer to use a curvilinear system
in order to derive estimate (3.7) in tangential and normal directions. Because
of the missing boundary conditions for the pressure we obtain the estimates
in the normal direction by applying the (pressure-eliminating) curl operator
to the system (2.21)2.

Let T : Ω0 ⊂ Ω→ Ω be a diffeomorphism. Using (3.2) we get the identity

0 =
(∂v

∂t
(Tx)− ∂v

∂t
(x),ϕϕϕ(x)

)
+

∫
Ω

[
∂ijΦA(|D(v(Tx))|2)− ∂ijΦA(|D(v(x))|2)

]
Dij(ϕϕϕ(x)) dx

+
(
(vεk

∂v
∂xk

)(Tx)− (vεk
∂v
∂xk

)(x),ϕϕϕ(x)
)

+
(
∇π(Tx)−∇π(x),ϕϕϕ(x)

)
−

(
f(Tx)− f(x),ϕϕϕ(x)

)
≡ I1 + I2 + I3 + I4 + I5

(3.9)

valid for “correct” ϕϕϕ. In (3.9) we suppressed the dependence of v, π, f and
ϕϕϕ on t. If g denotes one of these quantities, then

(
g(Tx)− g(x),ϕϕϕ(x)

)
≡

∫
Ω

(
g(t, Tx)− g(t, x)

)
·ϕϕϕ(t, x) dx .

This convention is used in the sequel. In case of interior regularity, let
V ′ ⊂⊂ Ω0 ⊂⊂ Ω be such that dist(∂Ω0, ∂Ω) = h0 > 0. Let er, r = 1, 2, 3, be
a basis of a coordinate system in R3. Setting for r = 1, 2, 3 and h ∈ (0, h0)

T = Tr,h : x 7→ x + her , (3.10)

we then get T : Ω0 → Ω. Let us consider a cut-off function ξ ∈ D(Ω0) such
that ξ ∈ [0, 1] in Ω and ξ ≡ 1 in V ′.
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In the case of regularity (near the boundary) in tangential directions, let
us consider one of the maps ak, k = 1, 2, . . . , N , that locally describe ∂Ω
(cf. [4], page 305). We know that for a certain α > 0, ∂Ω is covered by sets
V k ≡ {x = (x′, x3) ∈ R3 : x′ = (x1, x2); |x′| ≤ α and ak(x′) − α < x3 <
ak(x′) + α} , where ak ∈ C3(Bα(0′)) and

∂ak(0′)
∂xs

= 0, (s = 1, 2). (3.11)

Let us also define V k
+ ≡ {x ∈ R3 : |x′| ≤ α and ak(x′) < x3 < ak(x′) + α} ,

V k
− ≡ {x ∈ R3 : |x′| ≤ α and ak(x′) − α < x3 < ak(x′)} ; then V k =

V k
+ ∪ V k

− ∪ {x ∈ ∂Ω : |x′| ≤ α and x3 = ak(x′)}. We finally choose sets Ωk
0

covering ∂Ω such that Ωk
0 ⊂ V k, dist(∂Ωk

0 , ∂V k) ≥ h0 > 0.
Let us fix k and drop for simplicity the index k. Setting ê1 ≡ (1, 0)

and ê2 ≡ (0, 1) , we can define for s = 1, 2 and h ∈ (0, h0) the mapping
T = Ts,h : Ω0 → V by

x 7→ (x′ + hês, x3 + a(x′ + hês)− a(x′)) ≡ y . (3.12)

Then the inverse mapping T−1 is given by (x = T−1(y))

y 7→ (y′ − hês, x3 + a(y′ − hês)− a(y′)) . (3.13)

Put
∆±a(x′) = a(x′ ± hês)− a(x′) . (3.14)

Then

(∂Ti

∂xj
(x)

)
i,j=1,2,3

=

 1 0 0
0 1 0

∂∆+a
∂x1

(x′) ∂∆+a
∂x2

(x′) 1

 (3.15)

and

(∂T−1
i

∂yj
(y)

)
i,j=1,2,3

=

 1 0 0
0 1 0

∂∆−a
∂y1

(y′) ∂∆−a
∂y2

(y′) 1

 . (3.16)

Both matrices in (3.15) and (3.16) have determinant equal to 1 (the same
is true for T defined in (3.10)). The s-th tangential derivative (s = 1, 2) of
any (scalar or vector) function g, denoted ∂g

∂τs , is defined by

∂g

∂τs
(x) ≡ lim

h→0

g(Tx)− g(x)
h

,
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and it holds that

∂g

∂τs
(x) =

∂g

∂xs
(x) +

∂g

∂x3
(x)

∂a

∂xs
(x′) . (3.17)

For the reader’s convenience let us note that if g ∈W 1,p
0 (Ω), p > 1, then for

all h ∈ (0, h0)

∫
Ω0

∣∣g(Tx)− g(x)
h

∣∣p dx ≤ c(a)‖∇g‖pp . (3.18)

Indeed, setting Tλ(x) =
(
x′ + λês, x3 + a(x′ + λês)− a(x′)

)
, we can write

∫
Ω0

∣∣g(Tx)− g(x)
h

∣∣p dx =
∫

Ω0

∣∣ ∫ 1

0

∂g(Tλ(x))
∂τ s

dλ
∣∣p dx

≤
∫

Ω0

∫ 1

0

∣∣∂g(Tλ(x))
∂τ s

∣∣p dλ dx ≤
∫ 1

0

∫
Ω

∣∣∂g(y)
∂τs

∣∣p dy dλ
(3.17)

≤ c(a)‖∇g‖pp .

On the other hand, if g ∈ Lp(Ω) and if for all h ∈ (0, h0)

∫
Ω

∣∣g(Tx)− g(x)
h

∣∣p dx ≤ c0 <∞ , (3.19)

then
∂g

∂τs
exists (for s = 1, 2) in the sense of distributions and

∫
Ω

∣∣ ∂g

∂τs

∣∣p dx ≤ c0 . (3.20)

If further V ′ ⊂⊂ Ω0, we consider ξ ∈ [0, 1], ξ ∈ D(Ω0), ξ ≡ 1 in V ′. Setting

ϕϕϕ =
1
h2

(
v(Tx)− v(x)

)
ξ2(x) (3.21)

we see that interior regularity and regularity in tangential directions can be
treated analogously. Since the mapping T is more complicated in the latter
case, we will present a detailed proof for it. In order to shorten formulas
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let us denote w(x) ≡ v(Tx)− v(x). Let us take (3.21) as a test function in
(3.9), and let us calculate the terms Ik, k = 1, . . . , 5, separately. We get

I1 =
1
2

d

dt

∫
Ω0

∣∣w
h

∣∣2ξ2 dx , (3.22)

I2 =
1
h2

∫
Ω0

[
∂ijΦA(|D(v(Tx))|2)− ∂ijΦA(|D(v(x))|2)

]
Dij(w(x))ξ2(x) dx

+
2
h2

∫
Ω0

[
∂ijΦA(|D(v(Tx))|2)− ∂ijΦA(|D(v(x))|2)

]
wi(x)ξ(x)

∂ξ(x)
∂xj

dx

= J1 + J2 . (3.23)

By (2.24) and Lemma 6.5 from the appendix we have

J1 =
1
h2

∫
Ω0

∫ 1

0

∂ij∂klΦA(|D(v) + λD(w)|2)Dij(w)Dkl(w)ξ2 dλ dx
(3.24)

≥ C10

∫
Ω0

∣∣D(w)
h

∣∣2ξ2 dx ≥ C14

∫
Ω0

∣∣∇w
h

∣∣2ξ2 dx− c

∫
Ω0

∣∣w
h

∣∣2∣∣∇ξ
∣∣2 dx ,

while

|J2| =
2
h2

∣∣ ∫
Ω0

∫ 1

0

∂ij∂klΦA(|D(v) + λD(w)|2)Dkl(w)ξwi
∂ξ

∂xj
dλ dx

∣∣
(2.23)2
≤ 2C̃2(A)

h2

∫
Ω0

∣∣∇w
∣∣ξ |w||∇ξ| dx (3.25)

≤ C14

8

∫
Ω0

∣∣∇w
h

∣∣2ξ2 dx + c

∫
Ω0

∣∣w
h

∣∣2∣∣∇ξ
∣∣2 dx .

Note that in this section all generic constants c can depend on A. Further,
the convective term gives

h2I3 =
∫

Ω0

wεk(x)
∂vi(Tx)

∂xk
wi(x)ξ2(x) dx +

∫
Ω0

vεk(x)
∂wi(x)

∂xk
wi(x)ξ2(x) dx

= −
∫

Ω0

∂vεk(Tx)
∂xk

vi(Tx)wi(x)ξ2(x) dx−
∫

Ω0

wεk(x)vi(Tx)
∂wi(x)

∂xk
ξ2(x) dx

− 2
∫

Ω0

wεk(x)vi(Tx)wi(x)ξ(x)
∂ξ(x)
∂xk

dx−
∫

Ω0

vεk(x)|w(x)|2ξ(x)
∂ξ(x)
∂xk

dx

= J3 + J4 + J5 + J6 . (3.26)
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Since div vε = 0, by (3.15)

J3 = −
∫

Ω0

∂vεs(Tx)
∂y3

∂∆+a(x′)
∂xs

vi(Tx)wi(x)ξ2 dx , (3.27)

where we have started to use the convention that whenever the index s ap-
pears twice in an expression we sum over s from 1 to 2. Using the regularity
of the mollified function, the regularity of the boundary and (3.4), we get
from (3.26) and (3.27)

|I3| ≤
C14

8

∫
Ω0

∣∣∇w
h

∣∣2ξ2 dx + c

∫
Ω0

∣∣w
h

∣∣2(|∇ξ|2 + |ξ|2
)
dx . (3.28)

The pressure term I4 requires more calculations. It is useful to start with
an equivalent form

I4 =
∫

Ω0

∂π(x)
∂xi

[
ϕϕϕi(Tx)−ϕϕϕi(x)

]
dx =

∫
Ω0

π(x) div
(
ϕϕϕ(x)−ϕϕϕ(T−1x)

)
dx .

With ϕϕϕ as in (3.21) we obtain

h2I4 =
∫

Ω0

π(x)
[
div w(x) ξ2(x)− div w(T−1x) ξ2(T−1x)

]
dx

+ 2
∫

Ω0

π(x)
[
wi(x)ξ(x)

∂ξ(x)
∂xi

− wi(T−1x)ξ(T−1x)
∂ξ(T−1x)

∂xi

]
dx

=
∫

Ω0

π(x) div
(
v(Tx)− 2v(x) + v(T−1x)

)
ξ2(x) dx

+
∫

Ω0

π(x) div w(T−1x)
(
ξ2(x)− ξ2(T−1x)

)
dx

+ 2
∫

Ω0

π(x)
[
vi(Tx)− 2vi(x) + vi(T−1x)

]
ξ(x)

∂ξ(x)
∂xi

dx

+ 2
∫

Ω0

π(x)wi(T−1x)
(

ξ(x)
∂ξ(x)
∂xi

− ξ(T−1x)
∂ξ(T−1x)

∂xi

)
dx

= J7 + J8 + J9 + J10 . (3.29)

Using further (3.15), (3.16) and the fact that divv = 0 in QT , we rewrite J7
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as follows:

J7 =
∫

Ω0

π(x)
(

∂vs(Tx)
∂y3

∂∆+a(x′)
∂xs

+
∂vs(T−1x)

∂y3

∂∆−a(x′)
∂xs

)
ξ2(x) dx

=
∫

Ω0

π(x)
(

∂vs(Tx)
∂y3

− ∂vs(x)
∂y3

)
∂∆+a(x′)

∂xs
ξ2(x) dx

+
∫

Ω0

π(x)
(

∂vs(x)
∂y3

− ∂vs(T−1x)
∂y3

)
∂∆−a(x′)

∂xs
ξ2(x) dx

+
∫

Ω0

π(x)
∂vs(x)
∂y3

∂

∂xs

(
a(x′ + hêr)− 2a(x′) + a(x′ − hêr)

)
ξ2(x) dx

= J11 + J12 + J13 . (3.30)

The last term in (3.9) is treated similarly; hence,

h2I5 =
∫

Ω0

fi(x)
(
vi(Tx)− 2vi(x) + vi(T−1x)

)
ξ2(x) dx (3.31)

+
∫

Ω0

fi(x)
(
vi(x)− vi(T−1x)

)(
ξ2(x)− ξ2(T−1x)

)
dx = J14 + J15 .

Now, since div w(Tx) =
∂vs(Tx)

∂y3

∂∆+a(x)
∂xs

, we see that

|J8| ≤ c

∫
Ω0

∣∣π(Tx)
∣∣∣∣∇v(Tx)

∣∣∣∣∇∆+a(x)
∣∣∣∣ξ(Tx)− ξ(x)

∣∣ dx . (3.32)

Hence
1
h2

(
|J8|+ |J10|+ |J13|+ |J15|

)
≤ c

(
‖π‖22 + ‖f‖22 + ‖∇v‖22

)
(3.33)

and

1
h2

(
|J11|+ |J12|

)
≤ c‖π‖22 +

C14

8

∫
Ω0

∣∣∇w
h

∣∣2ξ2 dx . (3.34)

It remains to estimate J9 and J14. Denoting g(x) ≡ w(x)
h = v(Tx)−v(x)

h , we
can rewrite J9 as follows:

J9

h2
=

∫
Ω0

π(x)
gi(x)− gi(T−1x)

h
ξ(x)

∂ξ(x)
∂xi

dx

=
∫

Ω0

π(x)
1
h

[
gi(x)ξ(x)− gi(T−1x)ξ(T−1x)

]∂ξ(x)
∂xi

dx

+
∫

Ω0

π(x)
1
h

[
ξ(T−1x)− ξ(x)

]
gi(T−1x)

∂ξ(x)
∂xi

dx .

(3.35)
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Since gξ ∈W 1,2
0 (Ω0) for fixed h, we can use (3.18) to conclude that

|J9|
h2
≤ c(a)‖π‖2‖∇ξ‖∞

( ∫
Ω0

∣∣∇w
h

∣∣2ξ2 dx
)1/2

+ ‖π‖2‖∇ξ‖∞‖∇v‖2 . (3.36)

Also

|J14|
h2
≤ ‖f‖2

( ∫
Ω0

∣∣∇w
h

∣∣2ξ2 dx

)1/2

+ ‖∇v‖2‖f‖2‖∇ξ‖∞ . (3.37)

Putting all calculations between (3.22) and (3.37) together, using Young’s
inequality and integrating over (0, T ) we finally obtain∫ T

0

∫
Ω0

∣∣∇w
h

∣∣2ξ2 dx dt ≤ c

∫ T

0

‖∇v‖22 + ‖π‖22 + ‖f‖22 dt + c(v0) . (3.38)

Hence, (see (3.19) and (3.20))

2∑
s=1

3∑
i=1

∫ T

0

∫
Ω

∣∣ ∂2v
∂xi∂τ s

∣∣2ξ2 dx dt ≤ c . (3.39)

In case of interior regularity, we proceed in an analogous way with some
simplifications due to the simpler structure of the mapping T ; cf. (3.10).
Thus (3.7) holds for all Ω′ ⊂⊂ Ω. This implies that the equation (2.21)2
holds almost everywhere.

In order to get (3.7) globally, we need an estimate of type (3.39) in the nor-
mal direction (which is locally x3). We avoid the missing information about
the pressure by taking the curl of (2.21)2. Recall that for h = (h1, h2, h3)

curlh =
(∂h3

∂x2
− ∂h2

∂x3
,
∂h1

∂x3
− ∂h3

∂x1
,
∂h2

∂x1
− ∂h1

∂x2

)
.

Applying the curl operator to (2.21)2 we obtain three equations in W−1,2(Ω);
however, only the first two are useful for us. The first equation reads

∂

∂x2

∂v3

∂t
− ∂

∂x3

∂v2

∂t
− ∂f3

∂x2
+

∂f2

∂x3
+

∂

∂x2

[
vεk

∂v3

∂xk

]
− ∂

∂x3

[
vεk

∂v2

∂xk

]
− ∂2

∂x1∂x2
∂31ΦA −

∂2

∂x2∂x2
∂32ΦA −

∂2

∂x2∂x3
∂33ΦA

+
∂2

∂x3∂x1
∂21ΦA +

∂2

∂x3∂x2
∂22ΦA +

∂2

∂x3∂x3
∂23ΦA = 0 ,

(3.40)
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while the second equation has the form

∂

∂x3

∂v1

∂t
− ∂

∂x1

∂v3

∂t
− ∂f1

∂x3
+

∂f3

∂x1
+

∂

∂x3

[
vεk

∂v1

∂xk

]
− ∂

∂x1

[
vεk

∂v3

∂xk

]
+

∂2

∂x1∂x1
∂31ΦA +

∂2

∂x1∂x2
∂32ΦA +

∂2

∂x1∂x3
∂33ΦA

− ∂2

∂x1∂x3
∂11ΦA −

∂2

∂x2∂x3
∂12ΦA −

∂2

∂x3∂x3
∂13ΦA = 0 .

(3.41)

We will get the desired estimate from the last terms in equations (3.40) and
(3.41) and from the equation

∂2v3

∂x2
3

= − ∂2v1

∂x1∂x3
− ∂2v2

∂x2∂x3
, (3.42)

which follows from the divergence-free constraint, taking the derivative with
respect to x3. Let us denote

G1 ≡
∂

∂x3

∂ΦA(|D(v)|2)
∂D13

and G2 ≡
∂

∂x3

∂ΦA(|D(v)|2)
∂D23

. (3.43)

Clearly, for i = 1, 2, ∫ T

0

‖ξGi‖2−1,2 dt ≤ c (3.44)

due to (3.4) and (2.23). From (3.40) and (3.41), we can also observe, using
(3.39) and (3.17), that∫ T

0

‖∂Gi

∂x3
ξ‖2−1,2 dt ≤ c + c

∫ T

0

∫
Ω

3∑
i=1

2∑
s=1

∣∣ ∂2v
∂xi∂xs

∣∣2 dx dt . (3.45)

Hence, by Theorem 6.7 on negative norms∫ T

0

‖ξGi‖22 dt ≤ c + c

∫ T

0

∫
Ω

3∑
i=1

2∑
s=1

∣∣ ∂2v
∂xi∂xs

∣∣2 dx dt . (3.46)

Directly from (3.43) we obtain the system

∂23∂13ΦA
∂D13

∂x3
+ ∂23∂23ΦA

∂D23

∂x3
(3.47)

=
G2

2
− 1

2

2∑
r,s=1

∂23∂rsΦA
∂Drs

∂x3
− 1

2
∂23∂33ΦA

∂2v3

∂x2
3
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∂13∂13ΦA
∂D13

∂x3
+ ∂13∂23ΦA

∂D23

∂x3

=
G1

2
− 1

2

2∑
r,s=1

∂13∂rsΦA
∂Drs

∂x3
− 1

2
∂13∂33ΦA

∂2v3

∂x2
3

.

Since the matrix

A ≡
(

∂23∂13ΦA ∂23∂23ΦA

∂13∂13ΦA ∂13∂23ΦA

)
(3.48)

is positive definite thanks to (2.24), we can compute ∂
∂x3

Ds3 (s = 1, 2) from
(3.47). Moreover, the coefficients of the matrix (3.48) are bounded due to
(2.23)2, so we get

∂Ds3(v)
∂x3

≈ right-hand side of (3.47) . (3.49)

Because of

∂Ds3(v)
∂x3

=
∂2vs

∂x2
3

+
∂2v3

∂xs∂x3
,

we conclude from (3.49), (3.42) and (3.17) that

3∑
i=1

∥∥∂2vi

∂x2
3

ξ
∥∥2

2
≤ c +

3∑
i,j=1

2∑
s=1

∥∥ ∂2vi

∂xj∂τ s
ξ
∥∥2

2
+ c sup

Ω0

2∑
s=1

∣∣ ∂a

∂xs

∣∣ 3∑
i=1

∥∥∂2vi

∂x2
3

ξ
∥∥2

2
.

(3.50)
Now, if we take Ω0 small enough, we can arrange due to (3.11) that

c sup
Ω0

2∑
s=1

∣∣ ∂a

∂xs

∣∣ ≤ 1
2
,

and the last term in (3.50) can be moved to the left-hand side. The proof of
(3.7) is finished. Theorem 3.3 is proved. ¤

We will finish this section by proving a variant of inequality (3.5) which
will be useful in Sections 4 and 5. For t ∈ I we denote

EA(t) ≡ 1 + ‖ΦA(|D(vε,A(t))|2)‖1 .
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Lemma 3.51. Set γµ(s) ≡ 1
1−µs1−µ for 1 6= µ ≥ 0 and γ1(s) ≡ ln (s) (the

derivative of γµ is denoted by γ′µ). Let p ∈ [2, 6). Then it holds for all t ∈ I
that ∫ t

0

‖∂vε,A

∂t
‖22 γ′µ(EA(τ)) dτ + sup

τ∈[0,t]

γµ(EA(τ))

≤ c(f ,v0) +
∫ t

0

γ′µ(EA(τ))
∫

Ω

|vε,A
ε |2|∇vε,A|2 dx dτ .

(3.52)

Proof. Let again v = vε,A and γ(s) = γµ(s). Multiplying equation (2.21)2
by ∂v

∂t γ′(EA(τ)) and integrating over Qt yields∫ t

0

‖∂v
∂t
‖22 γ′(EA(τ)) dτ −

∫ t

0

γ′(EA(τ))
∫

Ω

∂

∂xj
∂ijΦA(|D(v)|2)∂v

∂τ
dx dτ

≤ c(f) +
∫ t

0

γ′(EA(τ))
∫

Ω

|vε|2|∇v|2 dx dτ . (3.53)

Denoting the second term in (3.53) by J we need to show that J = γ(EA(t))−
γ(EA(0)) in order to obtain (3.52). Since v ∈ C(I;V2) ∩ L2(I;W 2,2(Ω)3)
and ∂v

∂t ∈ L2(I;L2(Ω)3) there exists a sequence {vn} ⊂ C∞(I;V) such that

vn → v strongly in L2(I;W 2,2(Ω)3) ,

vn(t)→ v(t) strongly in V2 for all t ∈ I ,

∂vn

∂t
→ ∂v

∂t
strongly in L2(I;L2(Ω)3) .

(3.54)

Then we have for all t ∈ I

lim
n→∞

∫
Ω

ΦA(|D(vn(t))|2) dx =
∫

Ω

ΦA(|D(v(t))|2) dx . (3.55)

To see (3.55), we use the inequality

|ΦA(|B|2)− ΦA(|A|2)| ≤ c
(
1 + |A|+ |B|

)
|A−B| ,

which follows from (2.23)1, and (3.54)2.
Observing that EA(vn(t)) ≥ 1 we have ‖γ′(EA(vn(t)))‖∞ ≤ 1. Thus we

obtain γ′(EA(vn(t))) ∗
⇀ χ(t) in L∞(I) at least for a subsequence. Since
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γ′(EA(vn(t))) → γ′(EA(v(t))) for all t ∈ I due to (3.55), it is easy to
conclude that

γ′(EA(vn(t))) ∗⇀ γ′(EA(v(t))) weakly-∗ in L∞(I) . (3.56)

Now, using (3.54) together with (3.56) gives

J = − lim
n→∞

∫ t

0

γ′(EA(vn(τ)))
∫

Ω

∂

∂xj
∂ijΦA(|D(vn)|2)∂vn

∂τ
dx dτ

from which we deduce

J = lim
n→∞

∫ t

0

d

dτ
‖ΦA(|D(vn)|2)‖1 γ′(EA(vn(τ))) dτ

= lim
n→∞

∫ t

0

d

dτ
(γ(EA(vn(τ)))) dτ = lim

n→∞
{γ(EA(vn(t)))− γ(EA(vn(0)))}.

Passing to the limit, which is allowed due to (3.55), the assertion follows.

4. Limiting process A→∞. The goal of this section is to pass to the
limit as A → ∞. This means to return from the quadratic approximations
ΦA to the original potential Φ. Since the convective term will still be molli-
fied, we will come from the Problem (NS-Dir) ε,A

p to the Problem (NS-Dir) ε
p

defined in (2.7). Nevertheless, in preparation for the limiting process ε→ 0+,
we will often indicate the dependence of the estimates on ε. We denote

Kε,A ≡
∫

Ω

|vε,A
ε |2|∇vε,A|2 dx.

We already know from (3.4)–(3.6) that strong solutions (vε,A, πε,A) of the
Problem (NS-Dir) ε,A

p satisfy the following estimates:

‖vε,A‖2L∞(I;H) + ‖vε,A‖2L2(I;V2)
≤ c(f ,v0), (4.1)

∥∥∂vε,A

∂t

∥∥2

L2(QT )
+

∥∥ΦA(|D(vε,A)|2)
∥∥

L∞(I;L1(Ω))

≤ c(f ,v0)
(
1 +

∫ T

0

Kε,A dt
)

,

(4.2)
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‖πε,A‖2L2(I;L2(Ω)) ≤ c(f ,v0)
(
1 +

∫ T

0

Kε,A dt
)

+
∫ T

0

∥∥∂ΦA(|D(vε,A)|2)
∥∥2

2
dt .

(4.3)

Note that due to (4.1) and (2.6)∫ T

0

Kε,A(t) dt ≤ c (
1
ε
, f ,v0) . (4.4)

From Lemma 4.15 below with µ = 0 and (4.4) it follows that∫ T

0

∥∥∇∂ΦA(|D(vε,A)|2)
∥∥ 2

p−1
6

p+1
dt

≤ c (
1
ε
, f ,v0)

(
1 +

∫ T

0

∥∥∂ΦA(|D(vε,A)|2)
∥∥2

2
dt

)
.

(4.5)

Due to (2.25) and (4.2) we also see

∥∥∂ΦA(|D(vε,A)|2)
∥∥p′

L∞(I;Lp′ (Ω))
≤ c (

1
ε
, f ,v0) . (4.6)

Recalling an interpolation inequality (valid for all p ∈ [2, 4])

‖g‖22 ≤ c‖g‖2(1−λ)
p′ ‖g‖2λ

1, 6
p+1

with λ =
3(p− 2)

(6− p)(p− 1)

we obtain∫ T

0

∥∥∂ΦA

∥∥2

2
dt ≤ T

∥∥∂ΦA‖2L∞(I;Lp′ (Ω))
(4.7)

+ c
∥∥∂ΦA

∥∥2(1−λ)

L∞(I;Lp′ (Ω))

∫ T

0

∥∥∇∂ΦA

∥∥2λ
6

p+1
dt .

Hence from Hölder’s inequality and (4.5)–(4.7) we obtain∫ T

0

∥∥∇∂ΦA(|D(vε,A)|2)
∥∥ 2

p−1
6

p+1
dt (4.8)

≤ c (
1
ε
, f ,v0)

(
1 +

∫ T

0

∥∥∇∂ΦA(|D(vε,A)|2)
∥∥ 2

p−1
6

p+1
dt

)(p−1)λ

,
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which implies for p ∈ [2, 3)∫ T

0

∥∥∇∂ΦA(|D(vε,A)|2)
∥∥ 2

p−1
6

p+1
dt ≤ c (

1
ε
, f ,v0) . (4.9)

Inequality (4.9) gives (see the appendix, Lemma 6.12, inequality (6.14))∫ T

0

∥∥D(∇vε,A)
∥∥ 2

p−1
6

p+1
dt ≤ c (

1
ε
, f ,v0) , (4.10)

and by inequality (6.4) we finally obtain∫ T

0

‖∇(2)vε,A‖
2

p−1
6

p+1
dt ≤ c (

1
ε
, f ,v0) . (4.11)

Considering also (4.1)–(4.4), (2.23)4, (4.6), (4.7), (4.9) and the Aubin-Lions
lemma (see Lions [8]) we get the existence of vε, πε such that for A → ∞
(or at least for subsequences)

vε,A ⇀ vε *-weakly in L∞(I;V2) ∩ L
2

p−1 (I;W 2, 6
p+1 (Ω)3) ,

∂vε,A

∂t
⇀

∂vε

∂t
weakly in L2(I;L2(Ω)3) ,

πε,A ⇀ πε weakly in L2(I;L2(Ω)) ,

∇vε,A → ∇vε strongly in L
2

p−1 (I;Lq̃(Ω)3×3) ,

∇vε,A → ∇vε strongly in Ls(I;Ls(Ω)3×3) ,

(4.12)

where q̃ < 6
p−1 and s < 2(2p+1)

3(p−1) .4 Because the ΦA’s approximate Φ lo-
cally uniformly, it is not difficult to conclude from (4.12) that vε solves
the Problem (NS-Dir) ε

p .

Remark 4.13. Since 2(2p+1)
3(p−1) > 2 for p ∈ [2, 4) we see from (4.12), (2.6) and

Vitali’s convergence lemma that for almost all t ∈ I

lim
A→∞

∫ t

0

Kε,A(τ) dτ =
∫ t

0

Kε(τ) dτ , (4.14)

4In (4.12)5 we used the following parabolic imbedding: for r = 2
p−1

and q = 6
p+1

the space L∞(I; L2(Ω)) ∩ Lr(I; W 1,q(Ω)) is continuously imbedded into Lτ (QT ), where

τ =
2(2p+1)
3(p−1)

, which follows from the interpolation inequality ‖u‖s ≤ ‖u‖1−α
2 ‖u‖α3q

3−q

with

α =
3(s−2)
s(4−p)

.
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where Kε =
∫
Ω
|vε

ε|2|∇vε|2 dx. Thus the estimates (4.2), (4.3) and (4.11)
for ∂vε

∂t , πε and ∇(2)vε remain valid due to the weak lower semicontinuity
of norms and (4.14).

Now, we formulate and prove Lemma 4.15, which implies (4.5), by setting
µ = 0, q = 6

p+1 and r = 2
p−1 in (4.16).

Before doing so, we shall relabel the interior cut-off function by ξ0 and
the cut-off function localized near the boundary by ξk, k = 1, 2, . . . , N . Let
us also use the convention that if ξk occurs in any expression then we sum
up over k from 1 to N .

Recall that γµ(s) = 1
1−µs1−µ for 1 6= µ ≥ 0 and γ1(s) = ln s. By γ′µ we

mean the derivative of γµ. Finally, we set θA(s) ≡ max(1 + s, 1 + A) and
EA(t) ≡ 1 + ‖ΦA(|D(vε,A(t))|2)‖1.
Lemma 4.15. For all ε > 0 and all A > 1 let (v, π) = (vε,A, πε,A) be
a solution of the Problem (NS-Dir) ε,A

p . For q ∈ [1, 6
p+1 ], r ∈ (0, 2

p−1 ] and
µ ≥ 0 we have∫ T

0

∥∥∇∂ΦA(|D(v)|2)
∥∥r

q
γ′µ(EA) dt +

∫ T

0

Y dt (4.16)

≤ c(f ,v0)
(
1 +

∫ T

0

(
Kε,A + ‖∂ΦA‖22

)
γ′µ(EA) dt

)
,

where

Y ≡ γ′µ(EA)
( ∫

Ω

θA(|D(v)|)p−2
(
|D(∇v)|2ξ2

0 +
2∑

r=1

|D(
∂v
∂τ r

)|2ξ2
k

)
dx

) r(p−1)
2

.

Proof. We split the proof into four steps. Step 1 deals with estimates of the
second derivatives in the interior of the domain and tangential derivatives
near the boundary. Step 2 gives the estimates of the full second veloc-
ity gradient near the boundary by means of the gradient of the tangential
derivatives. Inequalities for the full second velocity gradient are derived in
Step 3. Step 4 provides the derivation of (4.16).

Step 1: Second derivative estimates in the interior and in tangential direc-
tions near the boundary.

Since (2.21)2 is valid almost everywhere in QT , we can directly multiply
by −∆vε,Aξ2

0 . Let us drop the indices ε, A, so that v = vε,A, π = πε,A

and let I1, . . . , I5 denote the terms coming from (2.21)2 after multiplying by
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−∆vξ2
0 and integrating over Ω (precise definitions of Ik are given below).

We have

|I1| ≡ |
∫

Ω

∂v
∂t
·∆vξ2

0 dx| ≤ C14

8

∥∥∇(2)vξ0

∥∥2

2
+ c

∥∥∂v
∂t

∥∥2

2
, (4.17)

I2 ≡
∫

Ω0

∂

∂xj

∂ΦA(|D(v)|2)
∂Dij

∆viξ
2
0 dx

= −
∫

Ω0

∂ΦA(|D(v)|2)
∂Dij

Dij(∆v)ξ2
0dx− 2

∫
Ω0

∂ΦA(|D(v)|2)
∂Dij

∆viξ0
∂ξ0

∂xj
dx

=
∫

Ω0

∂2ΦA(|D(v)|2)
∂Dij∂Dkl

Dij(∇v)Dkl(∇v)ξ2
0 dx (4.18)

+ 2
∫

Ω0

∂ΦA(|D(v)|2)
∂Dij

Dij(
∂v
∂xk

)ξ0
∂ξ0

∂xk
dx

− 2
∫

Ω0

∂ΦA(|D(v)|2)
∂Dij

∆viξ0
∂ξ0

∂xj
dx = J1 + J2 + J3 .

Again we obtain

J1

(2.24)

≥ 1
2
J1 +

C10

2

∫
Ω0

|D(∇v)|2ξ2
0 dx (4.19)

(6.6)

≥ 1
2
J1 + C14

3∑
i,j=1

∫
Ω0

∣∣ ∂2v
∂xi∂xj

∣∣2ξ2
0 dx− c

∫
Ω0

|∇v|2|∇ξ0|2 dx ,

and
|J2 + J3| ≤

C14

8

∥∥∇(2)vξ0

∥∥2

2
+ ‖∂ΦA‖22 . (4.20)

The convective term, the pressure and the body force are estimated easily.
We have

|I3| ≡
∣∣− ∫

Ω0

vεk
∂v
∂xk

∆vξ2
0 dx

∣∣ ≤ C14

8

∥∥∇(2)vξ0

∥∥2

2
+ c Kε,A (4.21)

and
I4 ≡

∫
Ω0

∂π

∂xi
∆viξ

2
0 dx = −2

∫
Ω0

π∆viξ0
∂ξ0

∂xi
dx .

Hence
|I4| ≤ c‖π‖2

∥∥∇(2)vξ0

∥∥
2
≤ c‖π‖22 +

C14

8

∥∥∇(2)vξ0

∥∥2

2
. (4.22)
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Finally,

|I5| ≡ |
∫

Ω

f ·∆vξ2
0 dx| ≤ c‖f‖22 +

C14

8

∥∥∇(2)vξ0

∥∥2

2
. (4.23)

Collecting (4.17)–(4.23) we obtain (interior estimates)

∫
Ω0

∂2ΦA(|D(v)|2)
∂Dij∂Dkl

Dij(∇v)Dkl(∇v)ξ2
0 dx +

∫
Ω0

3∑
i,j,k=1

∣∣ ∂2vi

∂xj∂xk

∣∣2ξ2
0 dx

≤ c
(
‖f‖22 + Kε,A +

∥∥∂ΦA

∥∥2

2
+

∥∥∂v
∂t

∥∥2

2
+ ‖π‖22

)
≤ c

(
‖f‖22 + Kε,A +

∥∥∂ΦA

∥∥2

2
+

∥∥∂v
∂t

∥∥2

2

)
, (4.24)

where we used the inequality (cf. (4.3) and (3.8))

‖π(t)‖22 ≤ c
(
‖f(t)‖22 + Kε,A(t) +

∥∥∂ΦA(t)
∥∥2

2
+

∥∥∂v(t)
∂t

∥∥2

2

)
,

valid for almost all t ∈ I. The same procedure works if we estimate the
tangential derivatives. We obtain

∫
Ω0

∂2ΦA(|D(v)|2)
∂Dij∂Dkl

Dij(
∂v
∂τs

)Dkl(
∂v
∂τ s

)ξ2
k dx +

3∑
i,j=1

2∑
s=1

∫
Ω0

∣∣ ∂2vi

∂xj∂τ s

∣∣2ξ2
k dx

≤ c
(
‖f‖22 + Kε,A +

∥∥∂ΦA

∥∥2

2
+

∥∥∂v
∂t

∥∥2

2

)
. (4.25)

Because of the careful estimates of the tangential derivatives presented in
the previous section, we think it is not necessary to repeat more or less the
same steps once more.

Step 2: Evaluation of all second derivatives of the velocity near the boundary
in terms of tangential derivatives.

The aim of this step is to show that for q ∈ [1, 2]

‖θA(|D(v)|)p−2∇(2)vξk‖q ≤ c
(
‖f‖2 + K

1/2
ε,A +

∥∥∂ΦA

∥∥
2

+
∥∥∂v

∂t

∥∥
2

)
+ c

2∑
r=1

‖θA(|D|)p−2∇ ∂v
∂τ r

ξk‖q . (4.26)
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Set ζζζ ≡ (D13( ∂v
∂x3

), D23( ∂v
∂x3

)) and write θA instead of θA(|D(v)|). Since

3∑
i,j=1

∂2v
∂xi∂xj

=
3∑

i=1

2∑
r=1

∂2v
∂xi∂xr

+
∂2v
∂x2

3

(4.27)

and

∂2vs

∂x2
3

= 2Ds3(
∂v
∂x3

)− ∂2v3

∂x3∂xs
s = 1, 2 ,

∂2v3

∂x2
3

= − ∂2v1

∂x1∂x3
− ∂2v2

∂x2∂x3
,

we see that

|∇(2)v| ≤ c
∣∣∣ 3∑

i=1

2∑
r=1

∂2v
∂xi∂xr

∣∣∣ + c |ζζζ| , (4.28)

which leads (multiplying the last inequality by ξkθp−2
A ) to

θp−2
A |∇(2)v|ξk ≤ c

3∑
i=1

2∑
r=1

θp−2
A

∣∣∣ ∂2v
∂xi∂xr

∣∣∣ξk + c θp−2
A |ζζζ|ξk . (4.29)

In order to estimate the last term in (4.29) we use (3.47), which can be
re-written as (see (3.43) and (3.48) for the definition of G = (G2, G1) and
A)

Aζζζ = 1
2G−H , (4.30)

where H includes the remaining terms in (3.47). Thanks to (3.42) and (2.26),
H can be estimated by

|H| ≤ c

2∑
r,s=1

θp−2
A

∣∣∣Drs(
∂v
∂x3

)
∣∣∣ ≤ c̃

2∑
r=1

θp−2
A

∣∣∣∇ ∂v
∂xr

∣∣∣ .

As (Aηηη,ηηη) ≥ C0θ
p−2
A |ηηη|2, we see that (4.30) together with the last inequality

yields

C0θ
p−2
A |ζζζ| ≤ 1

2 |G|+ c̃
2∑

r=1

θp−2
A

∣∣∣∇ ∂v
∂xr

∣∣∣ .
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Plugging this into (4.29) results in

θp−2
A |∇(2)v|ξk ≤ c|G|ξk + c

3∑
i=1

2∑
r=1

θp−2
A

∣∣∣ ∂2v
∂xi∂xr

∣∣∣ξk . (4.31)

With the help of the definition for ∂
∂τr

, r = 1, 2 (cf. (3.17)), we deduce from
(4.31) that

θp−2
A |∇(2)v|ξk ≤ c|G|ξk + c

3∑
i=1

2∑
r=1

θp−2
A

∣∣∣ ∂2v
∂xi∂τ r

∣∣∣ξk

+ c
2∑

r=1

sup
Ωk

∣∣∣ ∂a

∂xr

∣∣∣ θp−2
A

∣∣∣∇(2)v
∣∣∣ξk .

Due to (3.11) we can arrange the covering of the boundary in such a way
that c supΩk

| ∂a
∂xr
| < 1

2 , which leads to

θp−2
A |∇(2)v|ξk ≤ c|G|ξk + c

2∑
r=1

θp−2
A

∣∣∣∇ ∂v
∂τ r

∣∣∣ξk . (4.32)

The inequality (4.26) will follow from (4.32) by taking the Lq-norm of all
terms provided that we can estimate ‖Gξk‖q in a suitable way. For this
purpose we proceed similarly to Section 3 using the curl-operator.

By the negative norm theorem (cf. the appendix, Theorem 6.7) and
equations (3.40) and (3.41) we have for s = 1, 2 (cf. (3.43))

∥∥Gsξk

∥∥
q
≤ c

∥∥ ∂

∂x3

∂ΦA

∂Ds3
ξk

∥∥
−1,q

+
2∑

r=1

3∑
i,k,l=1

c
∥∥ ∂2

∂xi∂xr

∂ΦA

∂Dkl
ξk

∥∥
−1,q

+ c‖ curl
(∂v

∂t
+ vε · ∇v + f

)
ξk‖−1,q + c

∥∥ ∂

∂x3

∂ΦA

∂Ds3
∇ξk

∥∥
−1,q

= I6 + · · ·+ I9 . (4.33)

We easily see that
I6 + I9 ≤ c‖∂ΦA‖2 (4.34)

and
I8 ≤ c(f ,v0)

(
1 + K

1/2
ε,A + ‖∂v

∂t
‖2

)
. (4.35)
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Further, we get using (2.26) (q′ = q/(q − 1))

I7 ≤ sup
φ∈W 1,q′

0 (Ω)
‖φ‖1,q′≤1

∫
Ω0

∣∣ ∂

∂xr

∂ΦA

∂Dkl
ξk

∂φ

∂xi

∣∣ +
∣∣ ∂ΦA

∂Dkl

(∂ξk

∂xi

∂φ

∂xr
+

∂2ξk

∂xi∂xr
φ
)∣∣ dx

≤ c

( ∫
Ω0

θ
(p−2)q
A |∇ ∂v

∂xr
|qξq

k dx

)1/q

+ c
∥∥∂ΦA

∥∥
2
. (4.36)

Now, using (4.33)–(4.36), (4.32) integrated over Ω and again the definition
of ∂

∂τr , we finally come to (4.26).
Step 3: Inequalities for the full second velocity gradient.

We are going to estimate the second gradient of the velocity putting (4.24),
(4.25) and (4.26) together. We first observe that by the Hölder’s inequality
we have

‖θp−2
A ∇(2)vξ0‖q + ‖θp−2

A ∇ ∂v
∂τ r

ξk‖q

≤ c
(
‖∇(2)vξ0‖2 + ‖∇ ∂v

∂τ r
ξk‖2

)
‖θA‖p−2

(p−2)2q
2−q

(4.37)

(2.27)

≤ c
(
‖∇(2)vξ0‖2 + ‖∇ ∂v

∂τ r
ξk‖2

)
‖1 + ∂ΦA‖

p−2
p−1

(p−2)2q
(p−1)(2−q)

.

Requiring W 1,q(Ω) ↪→ L
(p−2)2q

(p−1)(2−q) (Ω) we obtain the condition q ∈ [1, 6
p+1 ]

and
‖1 + ∂ΦA‖

p−2
p−1

(p−2)2q
(p−1)(2−q)

≤ c
(
‖1 + ∂ΦA‖

p−2
p−1
1 + ‖∇∂ΦA‖

p−2
p−1
q

)
.

Using this, (4.37), Lemma 6.3, (4.24)–(4.26) and Lemma 6.12 we come to
the conclusion that

‖∇∂ΦA‖q + ‖∇(2)v‖q ≤ c
(
‖f‖2 + K

1/2
ε,A +

∥∥∂ΦA

∥∥
2

+
∥∥∂v

∂t

∥∥
2

)
+c

(
‖∇∂ΦA‖

p−2
p−1
q + ‖1+ ∂ΦA‖

p−2
p−1
1

)(
‖f‖2+ K

1/2
ε,A +

∥∥∂ΦA

∥∥
2
+

∥∥∂v
∂t

∥∥
2

)
,

which yields with the help of Young’s inequality

‖∇∂ΦA‖q + ‖∇(2)v‖q ≤ c
(
1 + ‖f‖2 + K

1/2
ε,A +

∥∥∂ΦA

∥∥
2

+
∥∥∂v

∂t

∥∥
2

)
+ c

(
1 + ‖f‖2 + K

1/2
ε,A +

∥∥∂ΦA

∥∥
2

+
∥∥∂v

∂t

∥∥
2

)p−1

+ c
(
1 +

(
‖f‖2 + K

1/2
ε,A +

∥∥∂v
∂t

∥∥
2

)
‖∂ΦA‖

p−2
p−1
2 + ‖∂ΦA‖

2p−3
p−1

2

)
.

(4.38)
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Since 2p−3
p−1 ≤ p−1 for p ≥ 2 and p−1

p−2 is the dual exponent to p−1 we finally
obtain by considering the r-th power of the inequality (r > 0)

‖∇∂ΦA‖rq+‖∇(2)v‖rq ≤ c
(
1+‖f‖22+Kε,A+

∥∥∂ΦA

∥∥2

2
+

∥∥∂v
∂t

∥∥2

2

) r(p−1)
2

, (4.39)

which we wanted to prove.
Step 4: Derivation of (4.16).

Taking the r(p−1)
2 -th power of (4.24) and (4.25) and adding them to (4.39)

we obtain the inequality with the right-hand side bounded by the right-hand
side of (4.39) (up to a multiplicative constant). Then we multiply the so-
obtained inequality by γ′µ(EA) and integrate it with respect to time over
(0, T ). Inequality (4.16) then easily follows by requiring r(p−1)

2 ≤ 1 and also
taking (3.52) into account. ¤

We want to finish this section with four lemmas, which are consequences
of (3.52) and (4.16) if we pass to the limit as A→∞.

Lemma 4.40. Let p ∈ [2, 6). Then we have for almost all t ∈ I

‖∇vε(t)‖22 ≤ c(f ,v0) +
∫ t

0

Kε(τ) dτ. (4.41)

Proof. From (3.52) for µ = 0 and (2.23)4 we obtain

‖∇vε,A(t)‖22 ≤ c(f ,v0) +
∫ t

0

Kε,A(τ) dτ . (4.42)

From (4.14) and the lower semicontinuity of norms we immediately get
(4.41). ¤
Lemma 4.43. Let p ∈ [2, 3) and let γµ be defined as in Lemma 3.51, µ ≥ 0.
Then we have for almost all t ∈ I

ess sup
τ∈(0,t)

γµ(E(τ)) ≤ c(f ,v0) +
∫ t

0

Kε(τ) γ′µ(E(τ)) dτ , (4.44)

where E(t) ≡ 1 + ‖Φ(|D(vε(t))|2)‖1.
Proof. First we will show that for almost all t ∈ I

lim
A→∞

∫
Ω

ΦA(|D(vε,A(t))|2) dx =
∫

Ω

Φ(|D(vε(t))|2) dx . (4.45)
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We have∣∣ ∫
Ω

ΦA(|D(vε,A(t))|2) dx−
∫

Ω

Φ(|D(vε(t))|2) dx
∣∣

≤
∣∣ ∫

Ω

ΦA(|D(vε,A(t))|2) dx−
∫

Ω

ΦA(|D(vε(t))|2) dx
∣∣

+
∣∣ ∫

Ω

ΦA(|D(vε(t))|2) dx−
∫

Ω

Φ(|D(vε(t))|2) dx
∣∣ ≡ I1 + I2 .

(4.46)

From (2.27) and (2.23)4 follows

I1 ≤ C
(
1 + ‖∇vε,A(t)‖p−1

p + ‖∇vε(t)‖p−1
p

)
‖∇vε,A(t)−∇vε(t)‖p ,

which together with (4.12)4 gives for almost all t ∈ I

lim
A→∞

I1 = 0 , (4.47)

since 6
p−1 > p for p ∈ [2, 3). Further, from the definition of ΦA (cf. (2.17))

we see that

I2 =
∣∣ ∫
{x:|D(vε(t,x))|≥A}

ΦA(|D(vε(t))|2) dx− Φ(|D(vε(t))|2) dx
∣∣ . (4.48)

But from (4.12)5 we get for almost all t ∈ I

lim
A→∞

|{x : |D(vε(t, x))| ≥ A}| = 0 . (4.49)

This and the bound |ΦA(|D(vε)|2) − Φ(|D(vε)|2)| ≤ c(1 + |D(vε)|p) gives
lim

A→∞
I2 = 0 , which together with (4.47) proves (4.45). This in turn implies

that
γµ(EA(t))→ γµ(E(t)) for almost every t ∈ I ,

γ′µ(EA(t)) ∗⇀ γ′µ(E(t)) weakly-∗ in L∞(I) .
(4.50)

Furthermore, we have (cf. (4.14))∫
Ω

|vε,A
ε |2|∇vε,A|2 dx→

∫
Ω

|vε
ε|2|∇vε|2 dx in L1(I) . (4.51)

Since the first term in (3.52) is nonnegative we can pass to the limit in (3.52)
as A→∞ due to (4.50) and (4.51). This gives (4.44). ¤
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Lemma 4.52. Let p ∈ [2, 3) and let γµ be as in Lemma 3.51, µ ≥ 0. Then
we have for all q ∈ [1, 6

p+1 ] and all r ∈ [1, 2
p−1 ]

∫ T

0

‖∇∂Φ(|D(vε(t))|2)‖rq γ′µ(E(t)) dt +
∫ T

0

Z(vε(t))γ′µ(E(t)) dt (4.53)

≤ c(f ,v0)
(
1 +

∫ T

0

Kε(t) γ′µ(E(t)) dt +
∫ T

0

‖∂Φ(|D(vε(t))|2)‖22 γ′µ(E(t)) dt
)
,

where

Z(vε(t)) =
(
‖∇(2)vε(t)ξ0‖22 +

2∑
r=1

‖D(
∂vε(t)
∂τ r

) ξk‖22
) r(p−1)

2
.

Proof. Let us for simplicity denote γ(s) = γµ(s). In Lemma 4.15 we proved
for r ≤ 2

p−1∫ T

0

‖∇∂ΦA(|D(vε,A)|2)‖rq γ′(EA(t)) dt +
∫ T

0

Z(vε,A(t))γ′(EA(t)) dt
(4.54)

≤ c(f ,v0)
(
1+

∫ T

0

Kε,A γ′(EA(t)) dt +
∫ T

0

‖∂ΦA(|D(vε,A)|2)‖22 γ′(EA(t)) dt
)
.

Since ΦA approximates Φ locally uniformly we get from (4.12)5 that

∂ΦA(|D(vε,A)|2)→ ∂Φ(|D(vε)|2) almost everywhere in QT . (4.55)

From (4.6) and (4.9) we obtain5

∂ΦA(|D(vε,A)|2) is bounded in L
2(p+3)
3(p−1) (QT ) , (4.56)

which together with (cf. (2.25), (2.23)4)

|∂ΦA(|A|2)| ≤ c(1 + |A|)p−1

5Here we use the following parabolic imbedding: the space L∞(I; Lp′ (Ω)) ∩ Lr(I;

W 1,q(Ω)) is continuously imbedded into Lτ (QT ), where τ =
2(3+p)
3(p−1)

, which follows from

the interpolation inequality ‖u‖s ≤ ‖u‖1−α
p′ ‖u‖

α
3q

3−q

with α =
6(r(p−1)−p)
r(p−1)(6−p)

.
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and Vitali’s convergence lemma gives (for p ∈ [2, 3))

∂ΦA(|D(vε,A)|2)→ ∂Φ(|D(vε)|2) strongly in L2(QT ) . (4.57)

Thus, (4.57) and (4.50)2 enable the limiting process in the second term on
the right-hand side of (4.54). Similarly, using (4.14) and (4.50)2, we can
justify the limiting process in the first term on the right-hand side in (4.54).
It remains to pass to the limit in the left-hand side of (4.54). For all q <∞
we have

γ′(EA(t))→ γ′(E(t)) strongly in Lq(I) .

Therefore, by the Egorov theorem we know that there is a set Iδ, |I \Iδ| ≤ δ,
and a subsequence Aδ →∞ such that

γ′(EAδ
(t)) ⇒ γ′(E(t)) uniformly in Iδ .

From this and boundedness of ‖∇∂ΦA(|D(vε,A)|2)‖rq in L1(I) we conclude
that

lim inf
Aδ→∞

∫
Iδ

‖∇∂ΦAδ
(|D(vε,Aδ)|2)‖rq

(
γ′(EAδ

(t))− γ′(E(t))
)

dt = 0 .

Thus we have

lim inf
Aδ→∞

∫
Iδ

‖∇∂ΦAδ
(|D(vε,Aδ)|2)‖rq γ′(EAδ

(t)) dt

= lim inf
Aδ→∞

∫
Iδ

‖∇∂ΦAδ
(|D(vε,Aδ)|2)‖rq γ′(E(t)) dt . (4.58)

Since
0 < γ′(E(t)) ≤ 1 (4.59)

we can define by ν ≡ γ′(E(t)) dt a new measure, which is absolutely continu-
ous with respect to dt. From (4.57) and (4.9) we can identify the weak limit
of ∇∂ΦA in Lr(I;Lq(Ω)) as ∇∂Φ. From this, (4.59), the boundedness of the
right-hand side of (4.54) and the uniqueness of the weak limit we obtain that
∇∂ΦA(|Dvε,A|2) ⇀ ∇∂Φ(|Dvε|2) also in Lr(I, ν;Lq(Ω)), and therefore

lim inf
Aδ→∞

∫
Iδ

‖∇∂ΦAδ
(|D(vε,Aδ)|2)‖rq γ′(E(t)) dt

≥
∫

Iδ

‖∇∂Φ(|D(vε)|2)‖rq γ′(E(t)) dt .

Since δ > 0 was arbitrary and the terms on the right-hand side of (4.54) are
bounded independent of δ we can conclude the proof for the first quantity
on the left-hand side in (4.53) by a diagonal argument. The proof for the
second term on the left-hand side of (4.53) follows along the same lines. ¤
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Lemma 4.60. For p ∈ [2, 3), we have∫ T

0

∫
Ω

(1 + |D(vε)|)p−2
(
‖∇(2)vεξ0‖22 +

2∑
r=1

‖D(
∂vε

∂τ r
) ξk‖22

)
dx dt

≤ c(f ,v0)
(
1 +

∫ T

0

Kε(t) dt +
∫ T

0

‖∂Φ(|D(vε(t))|2)‖22 dt
)

. (4.61)

Proof. In Lemma 4.15 we proved∫ T

0

∫
Ω

θA(|D(vε,A)|)p−2
(
‖∇(2)vε,Aξ0‖22 +

2∑
r=1

‖D(
∂vε,A

∂τ r
) ξk‖22

)
dx dt

≤ c(f ,v0)
(

1+
∫ T

0

Kε,A dt +
∫ T

0

‖∂ΦA(|D(vε,A)|2)‖22 dt

)
. (4.62)

We have already shown in the proof of the previous lemma that we can pass
to the limit as A → ∞ in the right-hand side of (4.62). For the left-hand
side we proceed similarly and use (4.12) and the Egorov theorem to conclude
that for all δ > 0 there is a set Qδ, |Q \Qδ| ≤ δ, and a subsequence Aδ such
that

θAδ
(|D(vε,Aδ)|) ⇒ 1 + |D(vε)| uniformly in Qδ .

Now we finish the proof along the lines of Lemma 4.52.

5. Limiting process ε → 0. In the previous section we obtained so-
lutions (v, π) = (vε, πε) of the Problem (NS-Dir) ε

p , that were based on
estimates independent of A. These estimates, however, were dependent on
ε through Kε =

∫
Ω
|vε

ε|2|∇vε|2 dx, or precisely through
∫ T

0
Kε dt.

From the energy inequality (2.8) for the Problem (NS-Dir) ε
p , Lemma 4.40

and Remark 4.13 we get for all p ∈ [2, 3) and almost all t ∈ I

ess sup
t∈I

‖vε(t)‖22 +
∫ T

0

‖∇vε‖22 dt +
∫ T

0

‖∇vε‖pp dt ≤ c(f ,v0) , (5.1)

‖∇vε(t)‖22 ≤ c(f ,v0) +
∫ t

0

Kε(τ) dτ , (5.2)∫ T

0

‖∂vε

∂t
‖22 dt ≤ c(f ,v0)

(
1 +

∫ T

0

Kε(t) dt
)

. (5.3)

It is worth noticing that in addition to
∫ T

0
‖∇vε‖22 dt, which has already

occurred in (4.1) or (3.4), we now also obtain the estimate of
∫ T

0
‖∇vε‖pp dt
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in (5.1), as follows from (2.2). Moreover, we proved in Lemma 4.43 and
Lemma 4.52 that for µ ≥ 0

ess sup
τ∈(0,t)

γµ(E(τ)) ≤ c(f ,v0) +
∫ t

0

Kε(τ) γ′µ(E(τ)) dτ , (5.4)∫ T

0

‖∇∂Φ(|D(vε(t))|2)‖
2

p−1
6

p+1
γ′µ(E(t)) dt +

∫ T

0

Z(vε(t)) γ′µ(E(t)) dt
(5.5)

≤ c(f ,v0)
(
1 +

∫ T

0

Kε(t) γ′µ(E(t)) dt +
∫ T

0

‖∂Φ‖22 γ′µ(E(t)) dt
)

,

where γµ(s) = 1
1−µs1−µ, for µ ≥ 0 and µ 6= 1, and γ1(s) = ln (s) and

Z(vε(t)) is defined in Lemma 4.52. Moreover, in the case µ = 0 we also have
from Lemma 4.60∫ T

0

∫
Ω

(1 + |D(vε)|)p−2
(
‖∇(2)vεξ0‖22 +

2∑
r=1

‖D(
∂vε

∂τ r
) ξk‖22

)
dx dt

≤ c(f ,v0)
(
1 +

∫ T

0

Kε(t) dt +
∫ T

0

‖∂Φ(|D(vε(t))|2)‖22 dt
)

. (5.6)

Let us make two observations. Firstly, if µ ∈ [0, 1] in (5.4) and the right-
hand side is bounded, then {vε} lies in a ball of L∞(I;Vp). If µ > 1, then
inequality (5.4) gives us no information. Secondly, denoting

Ip, 6
p+1

(t) ≡
∫

Ω

(1 + |D(v(t))|)
6(p−2)

p+1 |D(∇v(t))| 6
p+1 dx (5.7)

and using Lemma 6.9, we obtain from (5.5) and (5.4) that

γµ(E(t)) +
∫ T

0

γ′µ(E(t))I
p+1

3(p−1)

p, 6
p+1

(t) dt +
∫ T

0

Z(v(t)) γ′µ(E(t)) dt (5.8)

≤ c(f ,v0)
(

1 +
∫ T

0

γ′µ(E(t))Kε(t) dt +
∫ T

0

γ′µ(E(t))‖∇v‖2(p−1)
2(p−1) dt

)
,

in which the first term is omitted if µ > 1.
Our last task is to estimate (uniformly with respect to ε) the right-hand

sides of (5.2)–(5.4), (5.6) and (5.8).
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(i) The case p ∈ [ 125 , 3). Let us first recall that by (2.4) the norm
‖Φ(|D(v)|2)‖1 is equivalent to ‖D(v)‖pp. Thus, we can estimate Kε in (5.4),
with µ = 0, in the same way as in (2.13), and we obtain

‖v(t)‖pp ≤ c(f ,v0) + c

∫ t

0

‖v‖2
5p−12
5p−6

2 ‖∇v‖p
16−5p
5p−6

p ‖∇v‖pp dτ ,

which together with (5.1) and Gronwall’s lemma gives the fact that

vε is bounded in L∞(I;Vp) (5.9)

uniformly with respect to ε. Thus
∫ T

0
Kε dt is bounded independent of ε and

it remains to bound the second term on the right-hand sides of (5.6) and
(5.8) for µ = 0. From (6.11) we deduce that

‖∇v‖
6(p−1)

p+1
6 ≤ C18

(
1 + ‖v‖

6(p−1)
p+1

p + Ip, 6
p+1

(t)
)
, (5.10)

which together with the interpolation inequality

‖∇v‖2(p−1) ≤ ‖∇v‖
3(p−2)

(6−p)(p−1)
6 ‖∇v‖

p(4−p)
(6−p)(p−1)
p

implies that

‖∇v‖2(p−1)
2(p−1)

(5.10)

≤ c‖∇v‖
2p(4−p)

6−p
p

(
1 + ‖∇v‖

6(p−2)
6−p

p + I
(p−2)(p+1)
(6−p)(p−1)

p, 6
p+1

)
(5.11)

(2.4)

≤ c‖Φ(|D(v)|2)‖
2(4−p)
6−p

1

(
1 + ‖Φ(|D(v)|2)‖

6(p−2)
p(6−p)
1 + I

(p−2)(p+1)
(6−p)(p−1)

p, 6
p+1

)
.

We get from (5.8) (µ = 0), (5.9) and the first inequality in (5.11)

∫ T

0

I
p+1

3(p−1)

p, 6
p+1

(t) dt ≤ c(f ,v0)
(
1 +

∫ T

0

I
(p−2)(p+1)
(6−p)(p−1)

p, 6
p+1

(t) dt
)

. (5.12)

However for p ∈ [2, 3) we see that the exponent on the right-hand side of
(5.12) is strictly less than the exponent on the left-hand side of (5.12). Thus
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the right-hand sides of (5.6) and (5.8) with µ = 0 are bounded independent
of ε, and we proved that∫ T

0

‖(1 + |D(vε)|) p−2
2 D(∇vε)‖22,loc dt +

∫ T

0

‖(1 + |D(vε)|) p−2
2 D(

∂vε

∂τ r
)‖22 dt∫ T

0

‖∂vε

∂t
‖22 dt + ess sup

t∈I
‖∇vε(t)‖pp +

∫ T

0

‖∇(2)vε‖
2

p−1
6

p+1
dt ≤ c(f ,v0) . (5.13)

From (5.13) and the Aubin-Lions lemma we obtain that for q̃ ∈ [1, 6
p−1 )

∇vε → ∇v in L
2

p−1 (I;Lq̃(Ω)3×3) , almost everywhere in QT . (5.14)

Using (5.1), (5.13), (5.14), (2.3) and Vitali’s convergence lemma we pass
to the limit as ε → 0 in the weak formulation of (2.7)2. Concerning the
uniqueness we argue as in [11], Theorem 5.4.37.

(ii) The case p ∈ [2, 12/5). We are going to estimate the terms on the
right-hand side of (5.8). For the convective term we have

Kε ≤ c‖∇v‖2p‖∇v‖2 6p
5p−6

≤ c‖∇v‖2(2−λ)
p ‖∇v‖2λ

6

(2.4)

≤ c‖Φ(|D(v)|2)‖
2(2−λ)

p

1

(
1 + ‖Φ(|D(v)|2)‖

2λ
p

1 + I
2λ(p+1)
6(p−1)

p, 6
p+1

)
,

where we have used the interpolation inequality ‖z‖ 6p
5p−6

≤ ‖z‖1−λ
p ‖z‖λ6 with

λ = 12−5p
6−p and 1 − λ = 2(2p−3)

6−p and (5.10). From this, (5.11) and (5.8) we
obtain that (recall γ′µ(s) = s−µ)

γµ(E(t)) +
∫ T

0

E(t)−µI
p+1

3(p−1)

p, 6
p+1

(t) dt (5.15)

≤ c(f ,v0)
(

1 +
∫ T

0

E(t)
4
p−µ dt +

∫ T

0

E(t)
2(p−1)

p −µ dt

+
∫ T

0

{
E(t)−µI

p+1
3(p−1)

p, 6
p+1

(t)
} 3(p−2)

6−p E(t)
p+2
6−p +µ(

3(p−2)
6−p −1) dt

+
∫ T

0

{
E(t)−µI

p+1
3(p−1)

p, 6
p+1

(t)
}λ

E(t)λ+
2(2−λ)

p +µ(λ−1) dt

)
.

Requiring now for the first two integrals on the right-hand side that the
exponent is less than 1 yields

µ1 =
4− p

p
, µ2 =

p− 2
p

. (5.16)
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Note that for p ∈ [2, 3) µ2 ≤ µ1. Furthermore, we require for the third
integral on the right-hand side of (5.15)

3(p− 2)
6− p

γ = 1 ,
[p + 2
6− p

+ µ(
3(p− 2)
6− p

− 1)
]
γ′ ≤ 1 ,

where 1
γ + 1

γ′ = 1, which implies

µ3 =
p− 2

2(3− p)
, (5.17)

and for the fourth integral on the right-hand side

λδ = 1 ,
[
λ +

2(2− λ)
p

+ µ(λ− 1)
]
δ′ ≤ 1 ,

where 1
δ + 1

δ′ = 1, which gives

µ4 = 2
3− p

2p− 3
. (5.18)

Note that for p ∈ [2, 12
5 ), we have µ3 ≤ µ4 and µ1 ≤ µ4, and therefore we

choose µ = µ4, since E(t)−1 ≤ 1. By Young’s inequality and (5.1) we obtain

γµ(E(t)) +
∫ T

0

E(t)−µI
p+1

3(p−1)

p, 6
p+1

(t) dt ≤ c(f ,v0) , (5.19)

where the first term is omitted if µ > 1. Note that

µ ≤ 1 if and only if p ≥ 9
4

,

and therefore we obtain (5.9) for these p’s. Now we go again into (5.15) and
set µ = 0. Using (5.9) and the fact that the exponents of the terms in the
squiggly brackets in (5.15) are strictly less than 1 we easily obtain that the
right-hand side of (5.15) is finite independent of ε. This together with (5.6)
yields (5.12), and we can conclude the proof for these p’s as in case (i). Due
to the definition of Ip, 6

p+1
we get from (5.19) for all p ∈ [2, 9/4)∫ T

0

(
1 + ‖∇v‖pp

)−µ‖∇2v‖
2

p−1
6

p+1
dt ≤ c(f ,v0) . (5.20)

Now we proceed analogously as in the Problem (NS-Per)p (cf. [11], Chapter
5, pp. 237–238, or [9]) to obtain from (5.20) ∇vε → ∇v strongly in L1(QT ).
The proof of Theorem 1.17 is complete.

6. Appendix. Here we first collect some general auxiliary definitions and assertions
used in the previous text, and then we prove more technical assertions concerning the
potentials Φ and ΦA.
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Proposition 6.1 (Korn’s inequality). Let 1 < p <∞ and let Ω ⊂ Rd be of class C1.
Then there exists a constant Kp = Kp(Ω) such that the inequality

Kp‖v‖1,p ≤ ‖D(v)‖p (6.2)

is fulfilled for all v ∈W 1,p
0 (Ω)d.

Proof.
See e.g. [14].

Lemma 6.3. Let 1 < p <∞ and let Ω ⊂ Rd be a domain of class C1. Then there exists

a constant cp = cp(Ω) such that for all v ∈W 1,p
0 (Ω)d ∩W 2,p(Ω)d

cp‖∇(2)v‖p ≤ ‖D(∇v)‖p . (6.4)

Proof. The assertion follows immediately from the algebraic identity

∂2vi

∂xj∂xk
=

∂Dik(v)

∂xj
+

∂Dij(v)

∂xk
− ∂Djk(v)

∂xi
.

Lemma 6.5. Let Ω ⊂ Rd be a domain, ∂Ω ∈ C1 and let v ∈W 1,2(Ω)d, ξ ∈ D(Ω). Then∫
Ω
|D(v)|2ξ2 dx ≥ C15

∫
Ω
|∇v|2ξ2 dx− C16

∫
Ω
|v|2|∇ξ|2 dx . (6.6)

Proof. We have∫
Ω

D(v) ·D(v)ξ2 dx =
1

2

∫
Ω

∂vi

∂xj

∂vi

∂xj
ξ2 dx +

1

2

∫
Ω

∂vi

∂xj

∂vj

∂xi
ξ2 dx = I1 + I2 .

The integration by parts yields

I2 =
1

2

∫
Ω
| div v|2ξ2 dx +

∫
Ω

vi
∂vj

∂xj
ξ

∂ξ

∂xi
dx−

∫
Ω

vi
∂vj

∂xi
ξ

∂ξ

∂xj
dx .

Thus we obtain

1

2

∫
Ω
|∇v|2ξ2 dx +

1

2

∫
Ω
| div v|2ξ2 dx

=

∫
Ω
|D(v)|2ξ2 dx−

∫
Ω

vi
∂vj

∂xj
ξ

∂ξ

∂xi
dx +

∫
Ω

vi
∂vj

∂xi
ξ

∂ξ

∂xj
dx

≤
∫
Ω
|D(v)|2ξ2 dx +

1

4

∫
Ω
| div v|2ξ2 dx +

1

4

∫
Ω
|∇v|2ξ2 dx + c

∫
Ω
|v|2|∇ξ|2 dx,

and the assertion follows.

Theorem 6.7 (On negative norms). Let 1 < p < ∞ and let v ∈ W 1,p
0 (Ω)d. Then

there exists a constant such that

c‖v‖p ≤ ‖v‖−1,p + ‖∇v‖−1,p . (6.8)

Proof. See e.g. [12].
In the rest of this section we assume that the potential Φ satisfies (1.9)–(1.11). Then,

by Lemma 2.22, the potential ΦA satisfies (2.23)–(2.26).

We denote Ip,q(v) ≡
∫
Ω(1 + |D(v)|)q(p−2)|D(∇v)|q dx.
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Lemma 6.9. Let p ≥ 2 and q ∈ [1,∞). Then there exist constants C17, C18 and C19

such that

C17Ip,q(v) ≤
∫
Ω
|∇∂Φ(|D(v)|2)|q dx ≤ C18Ip,q(v) (6.10)

‖∇v‖q(p−1)

(p−1) 3q
3−q

≤ C19

(
1 + ‖∇v‖q(p−1)

p + Ip,q(v)
)
. (6.11)

Proof. We have

Ip,q(v) =

∫
Ω

[
(1 + |D(v)|)p−2|D(∇v)|2

] q
2 (1 + |D(v)|)(p−2) q

2 dx

(1.10)

≤
∫
Ω

[
∂ij∂klΦ(|D(v)|2)Dij(∇v) ·Dkl(∇v)

] q
2 (1 + |D(v)|)(p−2) q

2 dx

≤
∫
Ω
|∇∂Φ(|D(v)|2)|

q
2 |D(∇v)|

q
2 (1 + |D(v)|)(p−2) q

2 dx

Young
≤ 1

2
Ip,q(v) + c

∫
Ω
|∇∂Φ(|D(v)|2)|q dx ,

which immediately gives the first inequality in (6.10). The second one follows easily from
the chain rule and (1.11). Further, we have

Ip,q(v) ≥
∫
Ω
|∇(1 + |D|)|q(1 + |D|)q(p−2) dx =

1

(p− 1)q

∫
Ω
|∇(1 + |D|)p−1|q dx

≥ c
( ∫

Ω
(1 + |D|)(p−1) 3q

3−q dx
) 3−q

3 − ‖(1 + |D|)p−1‖q
p′

(6.2)

≥ c‖∇v‖q(p−1)

(p−1) 3q
3−q

− c‖∇v‖q(p−1)
p − c ,

which is (6.11).

Lemma 6.12. Let p ≥ 2 and q ∈ [1,∞) and let χA be the characteristic function of the
set {x ∈ Ω : |D(v(x))| ≤ A}. Then there exist constants C20, C21, C22 such that

C20

∫
Ω

(
(1 + |D(v)|)q(p−2)

)
χA + (1 + A)q(p−2)(1− χA)

)
|D(∇v)|q dx

≤
∫
Ω
|∇∂ΦA(|D(v)|2)|q dx (6.13)

≤ C21

∫
Ω

(
(1 + |D(v)|)q(p−2)χA + (1 + A)q(p−2)(1− χA)

)
|D(∇v)|q dx,

and therefore ∫
Ω
|D(∇v)|q dx ≤ C22

∫
Ω
|∇∂ΦA(|D(v)|2)|q dx . (6.14)

Proof. We proceed analogously to the proof of Lemma 6.9 just using (2.24) instead of
(1.10) and (2.26) instead of (1.11).
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