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Abstract. Existence and regularity properties of solutions for the evolutionary
system describing unsteady flows of incompressible fluids with shear dependent
viscosity are studied. The problem is considered in a bounded, smooth domain of
R3 with Dirichlet boundary conditions. The nonlinear elliptic operator, which is
related to the stress tensor, has p structure. The paper deals with the case p > 2,
for which the existence of weak solutions is proved. If p > % then a weak solution
is strong and unique among all weak solutions.

1. Introduction and setting of the problem. This paper deals with
unsteady flows of an incompressible fluid in a bounded domain Q C R?,
d > 1 described by the system of equations

divv =0,
0 0 1.1
,o—v—divTE+pvk—V:—V7r+pf, (L1.1)
ot oxy,
where v = (v1,v2,...,vq) is the velocity, 7 represents the pressure, p is a
positive constant determining the density of a material, f = (f1, fa,..., fa)

stands for the given external body forces and T# denotes the extra stress
tensor.
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Let a finite T > 0 be given. Then all functions are evaluated at (t,z),
where ¢ € [0,7] and z € Q. We also use the usual summation convention
throughout the whole text. Let us further denote by D the symmetric part
of the velocity gradient; i.e., D = D(v) = £ [(Vv) + (Vv)?] . We consider a
constitutive relation for T of the form

T = T(D). (1.2)

Before specifying precise assumptions for T, let us first think of the following

four examples: for p > 1 and vy > 0 we set

T = 214|D|P?D,

TEZ = 20(1 + D|?) "z D,

TP = 20y(1 + [D|)"~2D,

TF = 2u5(1 + [DP 2D,

where |D| denotes the usual Euclidean matrix-norm.
On the one hand, the models (a)-(d) have some joint properties. Firstly,

for p = 2 all formulas reduce to the Stokes law, i.e., T¥ = 2yD, and (1.1)

turns into the Navier-Stokes system, which is a model for Newtonian fluids.

Secondly, we can easily construct scalar potentials to TZ in (1.3) (a)—(d).
In fact, all examples for T¥ can be written in the form

T = 20u(|D2)D (L4)

where p : RS’ — R(J)r is the generalized viscosity function. The corresponding
potential ® : RT — R to TF given in (1.4) is defined by

D2
®(|DJ?) = 1/0/0 wu(s)ds,

and we have for r,s =1,2,...,d

0 (-)
aDrs ’

Trs(') - 87“5(1)() = Q)(O) = 8,»5@(0) =0.

Considering a simple shear flow, i.e., v = (v1(z2),0,0), the quantity k =
|v}(z2)| (= 2|DJ in the considered motion) is called shear rate. This is
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why the fluids constituted by (1.3) are sometimes named fluids with shear-
dependent viscosity. Models belonging to this class of non-Newtonian fluid
mechanics are frequently used in engineering practice, as discussed in Malek,
Rajagopal, Ruzicka [13], for example.

Finally, it is worth remarking that all models (a)—(d) in (1.3) satisfy the
p-coercivity condition, i.e.,

T .D > 21 |DJP (1.5)

and they have (p — 1) growth, which means |T¥| < ¢(1 + |D|)?7!, ¢ > 0.
On the other hand, despite their similar structure, the graphs of u(|D]?)
differ dramatically from each other (cf. Figures 1.1 and 1.2 in [11]). The
different asymptotic behaviour of u(s) as s — 0% or s — 0o, makes the class
of investigated models robust and therefore very useful.

We complement the equations (1.1) by an initial condition

v(0,:) = vo() in €2, (1.6)
and by Dirichlet boundary conditions
v(t,z) =0  for all (¢,x) € [0,T) x ON. (1.7)

Simpler than (1.7) are space-periodic boundary conditions. In that case, {2
is a d-dimensional cube with sides of finite length L > 0 and

v, 7 are periodic with period L in each variable x;,i =1,2,...,d. (1.8)

By the Problem (NS-Dir),, we will mean the problem (1.1), (1.2), (1.6),
(1.7), while we will call the problem (1.1), (1.2), (1.6), (1.8) the Problem
(NS-Per),. Since no assumptions for T in (1.2) have been specified yet, one
should have in mind the examples (1.3) (a)—(d).

Our long-lasting aim is to study the global-in-time existence of (weak)
solutions to both the Problem (NS-Dir), and the Problem (NS-Per),, and
to investigate their further qualitative properties’ in dependence on the pa-
rameter p.

Regarding the Problem (NS-Dir),, the first mathematical investigations
go back to Ladyzhenskaya’s lecture at the International Mathematical Con-
gress in 1966, where she proposed, among others, to study the system (1.1),

1Here, however, we discuss the questions of uniqueness and regularity of weak solutions
only.
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(1.6), (1.7) and (1.3)(d) with p = 4. Later on these first results were ex-
tended, and presented in further contributions of Ladyzhenskaya; cf. [5], [6]
and [7]. Combining monotone operator theory and compactness arguments,
she proved the existence of weak solutions to all models (a)—(d) in (1.3) if
p>1+ 2Td2 and their uniqueness if p > %. See also Lions [8] for a compa-
rable proof of the same results. Recently, Amann [1] showed the existence
of regular (classical) solutions to the Problem (NS-Dir), provided that the
data f and v( are small and assuming that the tensor function T in (1.2)
satisfies

OrsT(0) = const. > 0.

Thus, in particular, these results are related to the models (b), (c) in (1.3)
if p>1and to (d) if p > 2.

More results are known about the Problem (NS-Per), due to a series
of papers Bellout, Bloom, Necas [3] (see also Bellout, Bloom, Necas [2]),
Mélek, Necas, Ruzicka [9], Malek, Rajagopal, Ruzicka [13] and finally the
monograph Malek, Necas, Rokyta, Ruzicka [11] which will be sometimes
used as a reference for detailed explanations and proofs of some assertions.

Excluding the example (a) in (1.3) for p > 2, the following has been
proved in these publications:

the existence of a weak solution forp € (%, 24y if d = 3,4;

the existence of a strong solution  forp > 1+ d2—f2 ifd>3;
forp > 1 ifd=2;

uniqueness of the weak solution forp>1+ d2—f2 ifd>2.

It is natural to ask whether the same results are valid for the Problem (NS-
Dir),, too. Since the superquadratic case (p > 2) and the subquadratic case
(p < 2) require different approaches, we investigate the former in this paper,
and we devote to the latter a forthcoming paper. We also concentrate, mainly
for methodological reasons, on three-dimensional situations, i.e., Q C R3.
If d =2 and p > 2, the existence and uniqueness of weak solutions follows
already from Ladyzhenskaya [5], [6] and [7] and Lions [8], while the regularity
(i.e., the existence of the unique strong solution) can be obtained following
the lines of the present paper. Finally, we also restrict ourselves to the
very interesting? and most complicated case p € [2,3). The case p > 3 will
require a slightly different technique which we intend to investigate later.

2The interest in studying the case p € [2, 3) is based on the fact that up to the present
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It might be worth remarking that if the nonlinearity T had a potential ¢
depending on the modulus of the full velocity gradient |Vv| and not only on
the modulus of the symmetric velocity gradient [D(v)|, then the results in
the preprint [10] hold not only for a larger set of parameters p (p € [2,6)), but
also provide stronger information on regularity of v. We want to emphasize,
however, that although the preprint [10] is formulated for models where the
potential ® depends on |D|, it holds only for cases when the potential ® of
the nonlinearity T depends on |Vv|, since Lemma 7.18 in [10] is correct only
in this case and wrong if ® depends on |D|.

Before formulating the main result, we will define some useful function
spaces and notions. Let (X (€2),] - || x(a)) be a Banach space of scalar func-
tions defined in . Then X ()3 (respectively X ()3*3 ) represents the
space of vector-valued (respectively tensor-valued) functions whose compo-
nents belong to X (2). Let further p, ¢ > 1 and k > 0. Then (LP(), || - ||,)
denotes the usual Lebesgue spaces and (W*®(€2), ||-||x) is used for standard
Sobolev spaces. Finally, by

(Lq((o,T);X(Q)), (/OT - ||§<(n>dt>1/q)

we denote Bochner spaces. Sometimes we write I instead of (0,7) and Qr
instead of I x Q. Also as usual, D(Q2) denotes the space of smooth functions
with compact support in €. We further define

V={peD()?:divyp =0},
H = the closure of V with respect to the || - [[2—norm,

V, = the closure of V with respect to the |V - ||,~norm.

In order to give the definition of weak and strong solutions to the Problem
(NS-Dir),,, we will specify assumptions on the tensor function T from (1.2).

results, the existence of weak solutions to the Problem (NS-Dir), was known only for
p > 11/5 and for the special linear case when p = 2 (this means for the Navier-Stokes
equations). The results presented here cover this gap, providing the existence of weak
solutions to the Problem (NS-Dir), for p > 2. In addition, we also give information about
the integrability of second derivatives if p > 9/4, which is important for the investigation
of large-time behavior in the range p € [9/4,5/2), since in this range this information is
essential while if p € [5/2,00) the global existence of a finite-dimensional attractor can
be proved using L (0, co; WP) regularity only, which is known if p > 5/2 for a weak
solution (see [12] for more details).
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Let R3*% = {D € R**® : D;; = Dj;, 4,5 = 1,2,3}. We assume the

sym

existence of a potential ® : R(J{ — ]R(J)r and constants Cy,Cy > 0 such that

for some p > 1 and for all r,s,m,n=1,2,3, B,D € R‘;’;n?ib
T,s(D) = 0,,®(|DJ*), @(0) = 9,,9(0) =0, (1.9)
0;j0u®(|DI*)Bij By > Ci(1+ |D|)P~*B|?, (1.10)
|0r5Omn®(ID]?)| < C2(1+ [D[)P~2. (1.11)

Remark 1.12. It is easy to check that examples (b)-(d) in (1.3) satisfy
(1.9)—(1.11), while the analogy of the condition (1.10) for the example (a)
reads

8ij8kl¢)(|D’2)BijBkl > Cl|D’p_2|B’2 .
We do not consider this case in this paper.

Definition 1.13. A function v is said to be a weak solution to the Problem
(NS-Dir), if and only if v € L*(I; H) N LP(I;V,) and the weak formulation

/ [—V-a—(p—l—ﬂj(D(v))Dij(cp)—vkv-a—(p |dx dt —/ fpdx dt—i—/ vo-pdx
T 3t afL'k T Q

(1.14)
is fulfilled for all ¢ € D(—o00,T;V).
Definition 1.15. A function v is said to be a strong solution to the Problem

(NS-Dir), if and only if

v e O H) N LX(1V,) N LT (W35 (@), Y e (1 L2()°)

and for all ¢ € V,, and almost every ¢t € I

(O )+ [ 1,00 0) (0 G 0) = (F(1) - (116)

The brackets (h, g) stand for [, h-gdz, where h-g e L'(Q).

Now we formulate the main result of this paper.
Theorem 1.17. Let Q C R? be a bounded domain, 02 € C3. Letp € [2,3),
vo €V, and f € L2(I; L*(Q)3). Assume that T in (1.2) satisfies (1.9)—(1.11).
Then there ezists a weak solution v to the Problem (NS-Dir),. Moreover, if

9 11
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then the solution is strong and unique, and for all Qo CC Q and 0 < t1 <
ty <T

/:2/Q (1+ DM))P2D(Vv)2dr dt < . (1.19)

In particular, v € L*(I; VVI?)’CZ(Q)?’) The tangential derivatives 88" r=1,2,

T

satisfy an estimate analogous to (1.19). Thus, Vg;’,. € L3(I; L*(Q)3%3).

Remark 1.20. By the results in [7] and [8], the existence of weak solu-
tions is obtained for p > % Thus Theorem 1.17 fills the gap between 2
and % Further, for p satisfying (1.18) we obtain regularity properties for
v. However, these results are slightly worse than those for the Problem
(NS-Per),, where strong solutions exists for all p > % and belong to the
space L?(I;W22(Q)3). It might be useful to emphasize that we are able
to strengthen our results significantly if the nonlinearity T comes from a
potential depending on the modulus of the full velocity gradient of v. More
precisely, if T = 0®(|Vv]), then the weak solutions exist for p € [2,6), and
the existence of strong solutions is guaranteed for p € (%,6). In addition,
the strong solutions belong to L¥' (I; W2 (Q)3), p' = p/(p — 1); see [10].
We want to warn the reader before possible confusions: the preprint [10] is
formulated for T = 0®(|D|); however, due to the wrong proof of Lemma
7.18 it is valid only for T of the type T = 9®(|Vv]).

The proof of Theorem 1.17 is split into several sections. In the next section
we clarify, using some formal arguments, the main difficulty of the problem
connected with low regularity of the pressure. This difficulty is overcome by
constructing an appropriate twofold approximation of the original problem
based on both the mollification of the convective term vsk% and on a
quadratic approximation of the potential ®, denoted by ® 4. Section 3 deals
with the existence and regularity of the weak solution to the approximate
problem. In Section 4 we carry out the limiting process from ® 4 to ®, while
in Section 5 we let ¢ — 0 and we finally obtain the results stated in Theorem

1.17. The appendix contains some helpful assertions.

2. Definition of the approximate problem. We start with a lemma
collecting some consequences of the assumption (1.9)—(1.11). The proof can
be found for example in Malek, Necas, Rokyta, Ruzi¢ka [11], Chapter 5,
Lemma 1.19 and Lemma 1.35.

Lemma 2.1. Let T and ® satisfy (1.9)—(1.11). Assume that p > 2. Then
there exist C;,i =3,...,7, such that for all B € R3X3

sym

T(B)-B > Cy(1 + [B] ?)|BJ?, (2.2)
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IT(B)| < Ca(1+ [B)P ", (2.3)
Cs(1+[B|P*)|BIP <Cs(3+ L[BP?)[B]> <&(|B|*) < Co(1+|B|)? (2.4)

and for all B, D € R3X3

(T(B)— T(D))- (B-D) > C7B-DJ>. (2.5)

Learning from the methods used for the Problem (NS-Per),, we start with
a mollification of the convective term. Let w € D(R?) be a usual mollification
kernel with support in By(0) = {2 € R® : |2| < 1} and [ps wda = 1. For

every € > 0 we define w, = E%w(f) and we put v, = v * w,; i.e.,

€

vio) = 5 [ o )vay.

It is easy to observe that

1
IVell22 < vl (2.6)

and for v € LP(Q2), always ||[ve|lp < [|V][p-
Now, let us consider® the Problem (NS-Dir);: to find (v,7) = (v°,7°)
such that

divv=0 in Qr,

Y divT(D(v)) + vgk% = —Vr+f inQr, (2.7)
k

v(0,)=vp(-) iInQ and v=0 atl x9N,

where T satisfies (1.9)—(1.11).

Now we formally derive a priori estimates. First, we multiply equation
(2.7)2 by v. Integrating over Qr, using (2.2), partial integration and a
p-version of Korn’s inequality (see (6.2) in the appendix), we obtain

t t
VI3 + C3K2 / IVV|2 dr +2C; K2 / IVvlEdr < e(f.vo),  (28)

3We put for simplicity p = 1 in the sequel, because the size of the constant density
plays no role in the whole analysis.
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where ¢(f,vg) denotes a generic constant depending only on the data; in
case of (2.8) c(f,vo) = ||[vol|3 + ¢||f||3. The estimate (2.8) is independent of
€, and we have

v e L>®(; H)NLP(I; V). (2.9)

Multiplying (2.7)2 by 3 v + (which is also divergence-free and vanishing at 052),
integrating over @ and using the fact that

Bv d ,
| TaE)Dy (G de = 5 [ (DE)P) o,

along with (2.4) we get

/ 123 dr +Kp||vV()|yg<c(f,vo)+/ V2TV dzdt = J. (2.10)

Now, since v satisfies (2.9) it is possible to prove that

12

J < c(f,vp) if p> T (2.11)
and
1 12
ch(g,f,vo) if pE[Z,E). (2.12)

Indeed, using for p € [%, 3) the interpolation inequality

5p—12
5p—6

_6
IVl 22 < vl Bp

vl s,
—17

we have

p(16—5p) 5p—12

+ = 25—
P ovide < IRl P, < oV

(2.13)
255pp:162 p156p:5é) P P
<c|[vlle Vvl T I VVp = R [[VV]D.

Observe that 1;;:56? < 1ifp> . Thus due to (2.9) and h € L*(0,T) we can
derive (2.11) for p € [#2,3) from (2.10) and Gronwall’s lemma. The estimate

(2.12) is a consequence of (2.6) and the imbedding W22(Q) — L*(Q). So
we have from (2.10)

i v if 12
/H 12 dr + |Vv (D)7 < {( o EPeRS) g

(f,vo) ifp> 1.
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In order to pass to the limit in the nonlinear term given by T (at least for
pE 2, %)) and in order to obtain higher regularity properties (for p > %) we
need more information about Vv. For the Problem (NS-Per), we used —Av
as a test function which is divergence-free, but in the case of the Problem
(NS-Dir),, the term —Av does not vanish at 0f2.

Let ' C Q' C Qand let £ € D(Q) be a cut-off function such that ¢ € [0, 1]
in Q’. Now, we multiply (2.7)2 by —Av&?, a test function vanishing at the
boundary, but not being divergence-free. Thus the pressure 7 enters the
picture. Using the divergence-free constraint we have — fQ VrAvE dr =
Jo TAVVE? d.

In order to clarify a key point that leads to the final approximation, we
will consider only the main terms, “forgetting” cut-off functions. This yields

%HVV(t)H%Jr/O /Qaijaqu’(\D(V)!2)Dij(VV)'Dkl(VV)dxdT

t t
</ / |f-Av|—|—|v€]|Vv]|Av|d:ch+/ / |7||Av|dx dT .
0o Jo 0 Ja

By (1.10) and Young’s inequality, we get

(2.15)

t T t
LIV ()2 + / VOV dr < e(5) / 1£]12 dt + e(6) / /Q Ve l?|Vv[2da dr

t ¢
+<5/ HAv\ng—l—/ /|7T|\Av|dzvd7' (2.16)
0 0 Ja
(2.12) 1 t t
< c(—,f,v0)+/ /\77] |Av]dxd7+(5/ |Av|3 dr.
(2.11) € 0 JQ 0

Since div T(D(-)) maps L?(I;V,) — LP (I; V), p' = 3By, we see that m €
4 (Qr), where p’ < 2. This fact causes the main difficulty, because we have

no information about Av in LP(Qr). If we estimate

t t t
//\wHAv[da;drgc(é)/ wgmw/ IVOv|2dr,
0 Q 0 0

then we need that m € L?(Q7) at least on the level of approximations. In or-
der to obtain this, we approximate the p-potential ® by quadratic potentials
® 4 in the following way: for A > 1 and B € R3*3 we define

sym
o(|BJ?) if Bl < A4,

2.17
az|B|? + a1|B| + ap if  B| > A, (2:17)

®a(lBP) = {



ON WEAK SOLUTIONS 267

where ag, aq, ao are such that &4 € CQ(RS' ). This gives
ap = B(A?%) + 20" (A?)A* — D' (A?) A2,

2.18
= —40"(AH A3,y = 20" (A% A% + D/ (A?). (2.18)

Defining T4 by

TA(B) = 09.4(|B[?), (2.19)
we see (compare with (2.23); below) that T# has linear growth and
div TA(D(:)) maps L?(I;Vs) into L?(I;Vy). Thus we finally come to the
definition of the approximate problem.
Definition 2.20. (the Problem (NS-Dir)s#) For given € > 0 and A > 1,

we look for v = v=4 and m = 754 solving the system
divv=0 in Qr,
ov _ div TA(D(v)) + Uaka_v = _Vr+f inQr, (2.21)
ot (9£Ck
v(0,)=vp(-) inQ and v=0 atlxoN.

We will need several inequalities connected with the potential ® 4, which
we summarize in the following lemma.

Lemma 2.22. Assume that (1.9)—(1.11) hold. Then ®4, A > 1, given by
(2.17), (2.18) and T 4 given by (2.19) satisfy (fori, j, k, I, r, s =1,2,3 and
all B,D € R3%3)

sym

024(IDI?)| < C1(A)(1 + D)),  [*@4(DP)| < C2(4),

0,84(D) D,y > CyDI, CyDI* < 84(DP) < Co(1 + DY,
0:;0u® 4(|D|2) Bij By > Cw{ El ig?%;ﬁp Zz:g“ ij (2.24)
10rs®a] < Cri(1+ [®a])7 (2.25)
|00, @ A (ID|?)] < Clg{ 8 i L]SL)Z i ZZ “g: i i: (2.26)
1+ 1094(|D|?)| > 013{ E j:'jlj)l))pl 1 z; ;E; i jf (2.27)

Proof. All assertions are evident if [D| < A. Therefore we assume [D| > A
in what follows. We first observe that (1.10) yields (for all B,D € R2X3)

sym

40" (|D|?)(D - B)? + 23'(|D[?)|B|? > Cy1(1 + |D|)*2|BJ?.
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In particular, for B = %I and D = %I we obtain

43" (A*) A% 420" (A%) > C1(1 + A)P~2. (2.28)
Similarly, from (2.2), we have
20'(|D[?) > C3(1 + [D[P7?),
and Cj is given by C3 = % (cf. [11], Chapter 5, Lemma 1.19). Choosing

D= %I gives

20’ (A%) > O3(1 + AP~2). (2.29)
On the other hand, (1.11) and (2.3) imply

40" (DY) D|? + 29’ (|DJ?) < Co(1 + |D|)P2 (2.30)
29’ (|D|*)|D| < Cy4(1 + D). (2.31)
As
9 D,
@j(I)A(]D\ ) = 2&2Dij + alﬁ ,
(2.32)

51'7'63'5 DijDrs
— Q] 3
D] ID[?

9ij0rs®A(ID?) = 2020165 + vy

we see that (2.23);_3, (2.24) and (2.26) are consequences of (2.28)—(2.32).
Let us verify (2.24), for example. We have (|D| > A)

B> (B-D)?

8ij0rs® 4(ID[?) Bij By = 205|Bf* + DI~ BF (2.33)
2 . 2
= (4¢>”<A2>A2+2<I>’(A2>)!BP—4@”(A2>A3—’\]i3’3| i 4¢”<A2>A3‘(B|D]|:;—> .

Then either ®”(A?) > 0 or ®"”(A%) < 0. If ®”(A?) > 0, we rewrite (2.33) as

3
20'(A%)|B|? +4<1>”(A2)A—

IDJ? (IB’ID|*(D| - A)* + A(D - B)?)

(2.29)
> 20/ (A2)|B2 > Cy(1+ AP2)[BJ. (2.34)
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If ®”(A?) is negative then (2.33) can be written as

3
(49"(A2) A2 + 20/ (A2))[BJ? — 40" (4%) =

2.
(2.28) (2.35)

> AP BP = D+ 4B > Gy + 47 BP,
where we used the relation between C; and C3 and the simple inequality
(1+ A)P=2 > 2(1+ AP=2) valid for p > 2. Thus, we conclude that (2.24)
holds independently of the sign of ®”(A?). Moreover, (2.33)-(2.35) with
B = D leads to

49" (A?) A% 4 20" (A?) > C3(1 + AP™2) . (2.36)
Next, (2.4) yields (2.23)4. Indeed, we have
©4(IDJ?) = 20"(A*) A*(ID? - 2A|D| + A%) + &'(A?)(|D[* — A?) + &(4?).
If ®”(A?) < 0 we rewrite and estimate the right-hand side as

(20" (A*) A% + @'(A%)) (|ID|* — A?) + 49" (4%) A% (A — |D|) + ®(A?)
(2§6> Cs 1 Ar—2

> 2(1+ AP ) (|D)? — A%) + Cs(= + )A?
(24) 2 2
03 2 03 p—2 2 2 CS P C'3 2
= — — — — > =
5 D+ SPAP(DP - A4%) 4 Zar > SRDJ?,

while if ®”(A?) > 0 we have

©4(|D[?) = 20"(A*)A*(|D| — A)? + &'(A*)(|ID[* — A%) + ®(4?)

(2.29) C 1  AP—2
> L+ AP)(DP? — A%) + Ca(y +

> )AZ,

(2.4)
which gives the same conclusion as above; i.e., the lower bound in (2.23)4 is
proved. The upper bound is clear. We also have

0, @(IDP?) = [(197(4%) A% 1 20 (4%)) 1 + 2<I>’(A2)% Dy

_ﬁ)
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Since all terms in front of D;; are positive we obtain (A > 1)

0@ A(IDI?)| = 20(A%) A + (42" (A%) A* + 20/(A%)) (D] - A)

(2.29)
> O3(1+ AP A > Cra(1+ APt
(2.36)

This proves (2.27). Finally, to prove (2.25) for |D| > A, it is enough (®4 €
C%(R{)) to show that for F(|D|) = ‘GCI)A(|D]2)|p(1+(I>A(|D|2))1_p the limit
lim|p|—o F(|DJ) is finite. However,

Fp) - PeeD e GealIDPT( )"
o -1 = - o a -1
(14 ao + a1|D| + az|D|2)” ob 1(ﬁnt s +1)”

Therefore,
) v 1 (2.30) _
\Dl|lgloo F(D]) <2 2 s < 2Cs.

3. On strong solutions to the Problem (NS—Dir)If’A. The goal of
this section is to prove the existence of a strong solution to the Problem
( NS—DiT);’A provided that € > 0 and A > 1 are fixed. We say that a couple
(v,m) = (vo4,7=4) is a strong solution to the Problem (NS-Dir)s if

v € L=(I; Vo) N LA(I; W?2(Q)?),

o o (3.1)
o ELPLLAQ?), me AL LAW),

and the weak formulation

(8:;§t) . p) +/§2T§(D(V(t)))Dij () dz + (vsk(t)%i)’w)

— (n(t). divep) + (£(t), ) (3.2)

is fulfilled for all ¢ € W, *(€2)? and almost all ¢ € I. In fact, due to the
linear growth of T4 and (3.1), a strong solution (v, 7) satisfies the equation
(2.20)2 almost everywhere in Q7.

A couple (v, 7) = (v=4, 754) will be called a weak solution to the Problem
(NS-Dir)e4 if v e L>(I;V2) and (3.1)2—3 and (3.2) are valid.
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Theorem 3.3. Let Q C R? be a bounded domain, 9Q € C3. Let vog € V,,
and £ € L?(I; L2(2)3) and p > 2. Then, for alle > 0 and A > 1 there exists
a strong solution (v, m) = (v&4,754) to the Problem (NS—Dz'r)]f’A such that
v is unique in the class of weak solutions of the Problem (NS-Dir S’A and it

holds that
||V||L°°(I;H) + HVHL2(I;V2) < c(f, vo) (3.4)
ov
HEH%Z(I;LZ(QP) + | PA(D)) o (1521 )

1
< c(f,vo) +/ v |?|Vv|2dz dt < c(g,f,vo) (3.5)

T

T
1712 rs25 0y < / 10® A(ID(v)?)|3 dt + / Vo2 Vv P dt + off)

T

1
< C(E7A>f7v0) : (36)

Moreover,
(2) 112 1
”V VHLQ(I;L2(Q)3X3) SC(E, ’f7V0)’ (3'7)

and (2.20)2 holds almost everywhere in Q.

Proof. The proof consists of two parts. While the first one, including the
existence of a unique weak solution, is standard (and we only sketch the
proof), the second one, proving the regularity result (3.7), uses methods
that are not so common, and we will give a detailed proof.

Using the Galerkin approach we can justify the a priori estimates (3.4)
and (3.5), which are derived in the same way as (2.8) and (2.12). By (2.6)
and (3.4) veka‘% € L*(I; L*(€2)3) . Due to (2.17), the operator

—div TA(D() : L1 WEA(Q)F) — L2 (W (@)°))

is a strongly monotone operator. Thus combining the Galerkin method with

the monotone operator theory we can prove the existence of a weak solution

v = v&4 satisfying (3.4) and (3.5). See Lions [8] for details, for example.
Defining F € L2(I; (Wy%(Q)%)") by

®0.0) = (P50 + [ THDEO)D; ) do
(3.8)
+ a2 )~ (8(0),0)

61’k ’
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we see that for almost all ¢t € I and all ¢ € V,, (F(t),¢) = 0. By De Rham’s
theorem and Theorem 6.7 there exists m € L*(I; L*(12)), [, mdx = 0 such
that

(F(t),p) = (Vr(t), ) VYo e Wy*(Q)°.

From (3.8) and known a priori estimates, we obtain (3.6), where we also
used (2.23);. Thus the first part of the proof is finished.

In the rest of this section we will focus on (3.7), having at our disposal
(3.4)-(3.6) and the weak formulation (3.2). The proof of (3.7) consists, as
usual, of interior regularity and regularity near the boundary. In the latter
case we will not flatten the boundary. We prefer to use a curvilinear system
in order to derive estimate (3.7) in tangential and normal directions. Because
of the missing boundary conditions for the pressure we obtain the estimates
in the normal direction by applying the (pressure-eliminating) curl operator
to the system (2.21),.

Let T : Qo C Q — Q be a diffeomorphism. Using (3.2) we get the identity

0= (X (w) - (), p(a)
+ [ [0 4(DOT)) = 0,2 a(D(@) )| Dyt@)) da
+ (g (T0) = (v ) (@), ()
+ (Vﬂ'(Tx) — Vw(x),(p(x)) - (f(Tx) — f(x),(p(a:))
=h+L+I3+1,+1s

valid for “correct” ¢. In (3.9) we suppressed the dependence of v, 7, f and
@ on t. If g denotes one of these quantities, then

(&(Tx) — g(x). () = /Q (8(t. Tx) — g(t,2)) - (t, z) da

This convention is used in the sequel. In case of interior regularity, let
V' ccC Qp CC Q be such that dist(9Q,92) = hg > 0. Let €",r =1,2,3, be
a basis of a coordinate system in R3. Setting for » = 1,2,3 and h € (0, ho)

T=T.p:x—x+he", (3.10)

we then get T': Qp — €. Let us consider a cut-off function £ € D(€) such
that £ € [0,1] in Q and { =11in V.
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In the case of regularity (near the boundary) in tangential directions, let
us consider one of the maps ax, k = 1,2,..., N, that locally describe OS2
(cf. [4], page 305). We know that for a certain a > 0, 9 is covered by sets
VE={r = (2/,23) € R?: 2/ = (z1,22);|7'| < @ and ap(2’) —a < 3 <
ar(2') + a} , where a, € C3(B,(0')) and

Oay(0/)
=0 (=12 (3.11)
Let us also define VF = {z € R? : [2/| < a and ay(2') < 23 < ax(z') + a},
VE = {2z e R®: |2/| < aand ap(z') — a < x3 < ag(2')}; then VF =
VEUVEU{z € 0Q : |2/| < a and x3 = ai(z’)}. We finally choose sets Qf
covering 9 such that Qf C V¥, dist(9QF, 0VF) > hg > 0.

Let us fix k and drop for simplicity the index k. Setting é! = (1,0)
and &% = (0,1), we can define for s = 1,2 and h € (0,hy) the mapping
T=Tsp:Q0—V by

z— (2 + hé® x5+ a(a’ + he®) —a(z') =vy. (3.12)

Then the inverse mapping 7! is given by (z = T~ (y))
)

y— (y —hée® x3 +aly’ — he®) —a(y)). (3.13)
Put
A*a(z') = a(z’ £ he®) —a(2). (3.14)
Then
1 0 0
oT;
((%(x))i T U S (3.15)
i man aata () stan)
and
_ 1 0 0
oT 1!
( 633' (y)>i —123 8A*0 / aA*l / v (3.16)
J R s (¥ %5t W)

Both matrices in (3.15) and (3.16) have determinant equal to 1 (the same
is true for T" defined in (3.10)). The s-th tangential derivative (s = 1,2) of
8895, is defined by

T

9(Tx) — g(x)

any (scalar or vector) function g, denoted
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and it holds that

dg dg ﬂ da , ,
875() &Es( +8x3(x &rsx)'

(3.17)

For the reader’s convenience let us note that if g € WO1 P(Q), p> 1, then for
all h € (0, hg)

/ I 29D 4y < cfa) vl (3.18)

Indeed, setting Th(z) = (' + Aé®, x5 + a(a’ + Aé®) — a(z')), we can write

9(Tz) — g(z) / / (“)g Ty (x P
/ gD =) [ D P da
0g(T( (3.17)
/Q/ | gaj_s " d dx </ /\ \pdyd/\ < c(a)||VyllE.
0

On the other hand, if g € L?(Q) and if for all h € (0, ho)

/ ‘ng ‘pdmgco<oo, (3.19)

d
then 8—9 exists (for s = 1,2) in the sense of distributions and
T

/ 155 I1P dz < ¢q. (3.20)

If further V' CC g, we consider £ € [0,1], £ € D(p), £ =1 in V’. Setting

0= % (v(Tz) — v(2))€3(x) (3.21)

we see that interior regularity and regularity in tangential directions can be
treated analogously. Since the mapping 7' is more complicated in the latter
case, we will present a detailed proof for it. In order to shorten formulas
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let us denote w(z) = v(Tx) — v(z). Let us take (3.21) as a test function in
(3.9), and let us calculate the terms Iy, k =1,...,5, separately. We get

1d

11255 Qo‘ﬁ‘ &dx, 522

I % / [OU-(I)A(!D(V(TQU))F) _ aijéA(]D(v(;p))‘Q)]Dij(W(x))§2(:C) dz
Qo

+ % /Q [0:0 A(ID(v(T2))[2) - aifbA(rD(v(:v))lQ)}wi@f)f(x)8555) dw

! (3.23)

By (2.24) and Lemma 6.5 from the appendix we have

_i ' . v w 2 ii (W W 2 T
5= [, f| (D0 D DD

D \Y%
2010/ |¥|2g2dxzcl4/ |TW\252dx_c/ P vef
Qo Qo Q

0

while
2 ' 2 0%
|J2|:ﬁ‘/ / 0150® 4(ID(v) + AD(w)[?) Dy (w)éw = dA da
Qo J0 Lj
(2.23)2 90
< QngA)/ Vwl¢ [wl|VE| de (3.25)
Qo

Chy Vw 2 o W2 2
<SRl da:+c/90‘ﬁ| Ve| der

Note that in this section all generic constants ¢ can depend on A. Further,
the convective term gives

i :/Q we() avéf;x)wi(@gz(x) alf’f"‘/Q Ver(2) alg;(:)wi(x)g(az) dx
= —/Q %f@vl(Tx)wl(x)g2($) d:E—/Q wek(m’)vl(Tg;)ag;(;)gz(x) da
9¢() € ()

2 [ wlo (T (@) 5 o [ i) ) G, de
= Js+Ji+ Js+ Jg. (3.26)
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Since divv. = 0, by (3.15)

015 D v (Tx)w;(x)€? d (3.27)

/ Oves(Tx) OATa(z')
Js = —

Qo

where we have started to use the convention that whenever the index s ap-
pears twice in an expression we sum over s from 1 to 2. Using the regularity

of the mollified function, the regularity of the boundary and (3.4), we get
from (3.26) and (3.27)

Bl [ SEPedove [ [FPOVER 41 do. 329
8 Ja, h Q h

The pressure term I requires more calculations. It is useful to start with
an equivalent form

()~ pi(o)] do = [ ) div (p(o) — (1) dor

I, =
Qo

With ¢ as in (3.21) we obtain

h2Iy = /Q m(z)[divw(z) & (z) — divw(T'2) (T "z)] da

9¢(x)

o
w2 [ 7o) fu@eo B - tager o ST

oz, ] dzx

= /Q m(z) div (v(Tz) — 2v(z) + v(T~'2)) & (z) dw

+/ m(z) divw(T~"2) (3 (z) — (T '2)) d
Qo

4o /Q (@ [vi(Ta) — 2v5(x) + vi(T~2)] €(x) %S)

T “l
+2/Q Tr(x)wi(T_ll') (g(x)% _g(T—lx)%ﬁ)) dx

=J;+Js+ Jg + Jio . (329)

dx

Using further (3.15), (3.16) and the fact that divv = 0 in @7, we rewrite J7
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as follows:
e [(2vs(Tw) 08 a(e) | vy (T™2) OAa(@)\ a0y o
= [ ) (P OS] | Sl B0 )
B Ovs(Tx)  Ovs(x)\ 0A a(z’) ,
—/Qoﬂ-(x)< dys Oy ) Iz Sl
Ovs(x) B ovs(T71z)\ 0A~a(2') , o) dee
+/Qo 7T(x)< dy3 Y3 ) D Sd

vs(x) 9 ! &") — 2a(z’) + a(x’ — he") )E3(z) dx
+/goﬂ(x> Dys ax8<a(x+he) o) ate = )>§()d

=Ju+Ji2+ Jis. (3.30)

The last term in (3.9) is treated similarly; hence,

h2I5 = A fil@) (vi(Tz) = 2vi(2) + vi(T~'2)) &3 (x) da (3.31)

fi(x) (vi(z) — v (T '2)) (6% (x) — (T 2)) do = Jia + Jis .

Qo
Ovs(Tz) AT a(x)
0ys 0xs

Now, since divw(T'z) = , we see that

|Jg| < C/Q ‘W(T:L’)"VV(TJC)HVA"‘CL(:U)H{(T@“) — f(x)| dr . (3.32)

Hence
1
25 ([Js] + 110] + [ 13| + [J15]) < e(llwlls + €15 + [Vv3) (3.33)
and
1 C
ﬁ(“ﬂ‘ + |J2]) < c|l7]3 + —14/ ‘—| £ da (3.34)
It remains to estimate Jy and Jy4. Denoting g(z) = ng) = "(T”C)h*v(z), we
can rewrite Jg as follows:
Ji gi(x) — g;(T 2 o (x
2= [y 2B Dy B
Qo T
1 _ _ 0&(x
= [ w3 la@e@ - g o0 B e @)
QO x’L
1 _ 4 O&(x
+ [ @) - om0 S dr.
QO x’L
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Since g€ € W, %() for fixed h, we can use (3.18) to conclude that

J Vw 2 1/2
’hg|<c< )17l V€ ]loo / =€ dn) " el Ve [V (3.36)

Also

J Vw 2 1z
<t [ 1TEPE ) S Il T (337
0

Putting all calculations between (3.22) and (3.37) together, using Young’s
inequality and integrating over (0,7") we finally obtain

T T
Vw2
/0 e |§2dxdt§c/0 IVVIZ + 713 + IE13 dt + c(vo) . (3.38)

Hence, (see (3.19) and (3.20))

ZZ/ /\(% s tdrat<c. (3.39)

s=1i=1

In case of interior regularity, we proceed in an analogous way with some
simplifications due to the simpler structure of the mapping 7 cf. (3.10).
Thus (3.7) holds for all ' cC . This implies that the equation (2.21)9
holds almost everywhere.

In order to get (3.7) globally, we need an estimate of type (3.39) in the nor-
mal direction (which is locally z3). We avoid the missing information about
the pressure by taking the curl of (2.21),. Recall that for h = (hq, ha, h3)

Ohs  Ohg Ohy Ohs Ohs Ol
81‘2 8.7}3 ’ 8.%‘3 8:(}1 ’ 8.’131 81‘2

Applying the curl operator to (2.21); we obtain three equations in W~=12(Q);
however, only the first two are useful for us. The first equation reads

0 81)3 0 8?}2 f3 6f2 0 81)3 0 (%2

I TR i vl WL e v L v Il W L2 el
02 02 02
R by - — )] (6} 3.40
89018902 831 A 6(E26{E2 832 A~ 8 28 3833 A ( )
2 2 2

0
) P
+ 81[]385[)1 821 at ox 38 2822 AT ox 36$3

823(I>A = 0)
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while the second equation has the form

D On 0 0w Of Of | O Oy O 0w

o TRl el TR g Wl vl (25w Rl v CE el

2 62 82
41
+6 o 1831@,4-1—(9 " 2832(I)A+8 W 3(933‘1>A (3.41)
0? 0? 0?
B 83318333 811(I)A B 8$281‘3 812(I)A B 81‘381‘3 813(I)A =0.

We will get the desired estimate from the last terms in equations (3.40) and
(3.41) and from the equation
82’1)3 821]1 82’1)2

—_ _ 42
Ox? 0x10x3  Ox90x3’ (3-42)

which follows from the divergence-free constraint, taking the derivative with
respect to x3. Let us denote

_ 9 024(D(v)]*) _ 9 924(ID(v)P)
Gl = 81‘3 6D13 and GQ = 8333 8D23 . (343)

Clearly, for i =1, 2,
T
| eGP pdr<c (3.44)
0

due to (3.4) and (2.23). From (3.40) and (3.41), we can also observe, using
(3.39) and (3.17), that

0G;
/0 12olt<c+c/ /ZZ\axax | da dt . (3.45)

i=1 s=1

Hence, by Theorem 6.7 on negative norms

/ 1€Gi ||2dt<c+c/ /ZZ]&T oz, | dx dt. (3.46)

=1 s=1

Directly from (3.43) we obtain the system
8D13 8D23

) ) A4
023013P 4 D23 + 023023 4 D23 (3.47)
G 1 0D, 0%vs
—2 i Z 0230, P4 — s 623833¢)A8—a::3

rsl
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oD oD
013013P 4 1 + 013023P 4 23
6 8333
G1 1 BD 1 82’1)3
=5 "3 Z 0130rsPaA——— 925 5513833‘1’,48—36%-

r,s=1

Since the matrix

(3.48)

A= <823813(I)A a23823(I>A >
N 813813(1)14 813823<I>A

is positive definite thanks to (2.24), we can compute %Dsg (s =1,2) from
(3.47). Moreover, the coefficients of the matrix (3.48) are bounded due to
(2.23)4, so we get

0Dg3(v)

~ right-hand side of (3.47). (3.49)
81‘3

Because of

dDgs(v) 9%, n 0?%vs3
Ors Ozt  Oxs0z3’

we conclude from (3.49), (3.42) and (3.17) that

0%v; *v;
zu el < +zzuamssu2+csupz\ \zuaxgsuz.

i,j=1s=1
(3.50)

Now, if we take Qy small enough, we can arrange due to (3.11) that

and the last term in (3.50) can be moved to the left-hand side. The proof of
(3.7) is finished. Theorem 3.3 is proved. O

We will finish this section by proving a variant of inequality (3.5) which
will be useful in Sections 4 and 5. For ¢t € I we denote

Ea(t) =1+ [ @a(DEA @) )1 -
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Lemma 3.51. Set v,(s) = liusl_“ for1# >0 and v1(s) = In (s) (the
derivative of vy, is denoted by v, ). Let p € [2,6). Then it holds for allt € I

that

t gveA
/ 12 2 (Ba(r)) dr + sup 7u(Ea(r)
0 ot T€[0,t] (3 52)

t
< ¢(f,vp) +/O ’YL(EA(T))/Q |V§’A 2]Vv‘€’A|2 dx dr .

Proof. Let again v = v®4 and 7(s) = 7,(s). Multiplying equation (2.21),
by %—‘t’ v (E4(7)) and integrating over @Q; yields

AT L 0 9 OV
LG8 Eadr = [ (Eatr) [ Sau0a(DWPGY drdr

gc(f>+/0 ’y'(EA(T))/Q|V5]2]Vv]2dxd7. (3.53)

Denoting the second term in (3.53) by J we need to show that J = y(E(t))—
Y(EA(0)) in order to obtain (3.52). Since v € C(I; Vo) N L?(I; W22(Q)3)
and %—‘t’ € L%(I; L?(2)?) there exists a sequence {v"} C C°°(I;V) such that

vl — v strongly in L2(I; W?%(Q)?),
v (t) — v(t) strongly in V; forallt eI, (3.54)
% — g—‘t, strongly in L*(I; L?(Q)3).
Then we have for all t €

lim @A(|D(vn(t>)y2)dx:/@A(D(v(t))y2)dx. (3.55)

n=e0 Jq Q
To see (3.55), we use the inequality
[@4(IB*) = @a(|A[*)] < c(1+]A[+|B)|A - B,

which follows from (2.23);, and (3.54).
Observing that E4(v™(t)) > 1 we have ||y (Ea(v™(t)))||cc < 1. Thus we

*

obtain v (Ea(v™(t))) — x(t) in L>(I) at least for a subsequence. Since
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Y (Ea(v™(t))) — v (Ea(v(t))) for all ¢ € I due to (3.55), it is easy to
conclude that

Y (EA(v™(1))) =~ (Ea(v(t))) weakly-* in L>(T). (3.56)
Now, using (3.54) together with (3.56) gives

J = —lim V/(EA(VR(T»)/Q %@'jq)AUD(Vn)F)aa‘;n

n—oo 0

dx dt

from which we deduce

t

J= lim dijnq)AqD(v")P)ulv’(EAv”(r)))dr

n—oo 0
=t [ A () dr = lim Y(EaV (1)~ 1(Ea (v (0))).

n—oo [o dT
Passing to the limit, which is allowed due to (3.55), the assertion follows.

4. Limiting process A — oco. The goal of this section is to pass to the
limit as A — oo. This means to return from the quadratic approximations
® 4 to the original potential ®. Since the convective term will still be molli-
fied, we will come from the Problem (NS-Dir)5* to the Problem (NS-Dir);
defined in (2.7). Nevertheless, in preparation for the limiting process e — 07,
we will often indicate the dependence of the estimates on €. We denote

KE,AE/ WEARITvEA R da.
Q

We already know from (3.4)—(3.6) that strong solutions (v, 754) of the
Problem (NS-Dir)# satisfy the following estimates:

Vo e 1y + VS T2 110 < elE, Vo), (4.1)

ava,A 9 .
ot HL2(QT)+H(I>A(‘D(V ’A)‘Z)HLOO(I;LI(Q))

< e(£, vo) (1 n /OT K. dt) ,

(4.2)
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T
I srznion < clbvo) (14 [ Keadr)

T
+/O H@@A(!D(VE’A)F)szt.

Note that due to (4.1) and (2.6)

T 1
/ KE,A(t)dtgc(g,f,vo).
0

From Lemma 4.15 below with x4 = 0 and (4.4) it follows that

T 2
/O [VoR (D)) |7 de

T
gc(é,f,vo)<1+/0 H@@A(\D(VE’A)F)szt).

Due to (2.25) and (4.2) we also see

02 4(|D(v=*) f,vo).

1
HLoo(z Ly’ (Q)) = (g7

Recalling an interpolation inequality (valid for all p € [2,4])

2(1- . 3(p—2
loll3 < clalP Vgl with A= P

we obtain

T
2
| ool e < 70015~ 1

2(1-X)
bl Ny [ VORI, ar

Hence from Holder’s inequality and (4.5)—(4.7) we obtain

T 2
| Ivovaqpiv )| 7 a

p+1

1 T N e (p—1)A
gc(g,f,v0)<1+/0 |Vo@4(D(v* )\Z)HPgldt> ,

(6 —p)(p—

283

(4.7)

(4.8)
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which implies for p € [2,3)

T 2
| I90RaqD P 7T dt < et ove). (49)

6
p+1

Inequality (4.9) gives (see the appendix, Lemma 6.12, inequality (6.14))

T
2 1
/ |ID(Vve)||7s dt < c(=,f,vo), (4.10)
0 p+1 g
and by inequality (6.4) we finally obtain
/ IV 7T dt < (=, f,vo). (4.11)
0 p+1 £

Considering also (4.1)—(4.4), (2.23)4, (4.6), (4.7), (4.9) and the Aubin-Lions
lemma (see Lions [8]) we get the existence of v¢, 7€ such that for A — oo
(or at least for subsequences)

VoA s vE *-weakly in L(I; Va) N Lv-1 (I; W51 (Q)3)
oved gvE N 2 /w3
T T weakly in L°(I; L*(Q)°),
oA e weakly in L?(I; L*(Q2)), (4.12)

Vved - Vve strongly in L7t (1; LI (0>,
VveA o vve strongly in L*(I; L*(€Q)3%3),

where ¢ < :z% and s < %.4 Because the ®4’s approximate ¢ lo-

cally uniformly, it is not difficult to conclude from (4.12) that v¢ solves
the Problem (NS-Dir);.

Remark 4.13. Since % > 2 for p € [2,4) we see from (4.12), (2.6) and

Vitali’s convergence lemma that for almost all ¢ € T

t

t
lim K. aA(T)dr = / K. (r)dr, (4.14)
0

A—oo Jo

4In (4.12)5 we used the following parabolic imbedding: for r = % and ¢ = %

the space L™ (I; L2(Q2)) N L™ (I; W14(Q)) is continuously imbedded into L™ (Qr), where

23((2;_+11)) , which follows from the interpolation inequality |[ul|s < [lu]/3 ™ lul|*;, with

3—q

_ 3(s—2)
&= 5@
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where K. = [, [vE|*|Vve|*dz. Thus the estimates (4.2), (4.3) and (4.11)

for 83—‘28, 7€ and V@ v* remain valid due to the weak lower semicontinuity

of norms and (4.14).

Now, we formulate and prove Lemma 4.15, which implies (4.5), by setting
MZO,(]:I% andr:% in (4.16).

Before doing so, we shall relabel the interior cut-off function by &, and
the cut-off function localized near the boundary by &, k= 1,2,..., N. Let
us also use the convention that if £ occurs in any expression then we sum
up over k from 1 to V.

Recall that v,(s) = ﬁsl_” for 1 # > 0 and 71(s) = Ins. By 7, we
mean the derivative of 7,. Finally, we set 64(s) = max(1 + 5,1+ A) and
Ea(t) =1+ [@4(Dv=A(1)2)]1.

Lemma 4.15. For all ¢ > 0 and all A > 1 let (v,m) = (V&4 754) be
a solution of the Problem (NS—Dir)If’A. For q € [1, }%], r € (0, p%l] and
w >0 we have

T T
| 1900ADP) [ E) de+ [y (4.16)
0 0
T
< etovo) (14 [ (Ko + 1001 (En) dt).

where

—1
(‘3v 7«(1)2 :

PR da)

v =9 ( [ a2 (DTVPE + 3 D

Proof. We split the proof into four steps. Step 1 deals with estimates of the
second derivatives in the interior of the domain and tangential derivatives
near the boundary. Step 2 gives the estimates of the full second veloc-
ity gradient near the boundary by means of the gradient of the tangential
derivatives. Inequalities for the full second velocity gradient are derived in
Step 3. Step 4 provides the derivation of (4.16).

Step 1: Second derivative estimates in the interior and in tangential direc-
tions near the boundary.

Since (2.21)5 is valid almost everywhere in @7, we can directly multiply
by —Av®4€2. Let us drop the indices ¢, 4, so that v = v&4, 7 = 754
and let Iy, ..., I5 denote the terms coming from (2.21), after multiplying by
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—AvE2 and integrating over ) (precise definitions of I are given below).
We have

Ca

(4.17)

ov ov 2
nl=| | G- Avedel < VG + el 1.

9 024(ID(V)]?)
Qo 81‘j 8DZ]

:_/ wD(AV)é'le'—2/ 8(I)A(’D(v)‘ ) 50 50
% %) 0 % U

I, = Av;&2 da

5D, oD,
[ 9*24(D(v)]) 2
— /Qo WDij(VV)Dkl(VV)fO dx (4.18)
024(IDV)P) % ,
+2 /Q T ( )50 oy
_2/ w Av;& fOda:—<]1+<]2+']3
Q% 0D;; Ly

Again we obtain

(2.24) 1 C
A (|

Ji > 1+ — [ |D(VV)|*& dx (4.19)
2 2 Jo,
(6.6) 1
> J1 +C1q Z / }856 oz, ‘ & dx /Qo Vv [VEo|? de,
and o
| Jo 4 Ja| < =22 Hv(z) €o Hz + 102 4]13 (4.20)

The convective term, the pressure and the body force are estimated easily.
We have

o ov 9 014 2 2
I3 = | - /90 Ve g AVES dz| < ?Hw Wél|, + e Keoa (4.21)
and 5
I, = il szfo dx = —2/ WAUZ&) 60
Qo 8 Qo .ZUZ
Hence
Cla

[l < el V& veo |, < ellrlE + ==V véo I5- (4.22)

I
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Finally,

Cua Hv<2) v&o (4.23)

I = | / £ AVE de| < clf|3 + .

Collecting (4.17)—(4.23) we obtain (interior estimates)

P4 (ID(v)]?) 2
/Q OWDU(VV)DM(VV)EO dz + /QJZ ’835](31: i e

0
< c(||fug + Koa+]|00a] + | a%“; + ||7r||§)
0
< (I8 + Kot + 00413+ | 57 12) (4.24)

where we used the inequality (cf. (4.3) and (3.8))

Im@)13 < e(IE@I3 + Ko a) + 00t W+ 125 5 H)

valid for almost all ¢ € I. The same procedure works if we estimate the
tangential derivatives. We obtain

0@ A(ID(V))
Qo 8Dij8Dkl

Di;(

)Dklasﬁkdm-FZZ/ ‘6958 |§k

i,j=1s=1

v
< (1615 + Kea + 00+ 1 57 12)- (1.25)

Because of the careful estimates of the tangential derivatives presented in
the previous section, we think it is not necessary to repeat more or less the
same steps once more.

Step 2: Evaluation of all second derivatives of the velocity near the boundary
i terms of tangential derivatives.
The aim of this step is to show that for ¢ € [1, 2]

640D 2T veel, < (8l + K23 + Hacwlg +1271,)

2
+e) [9a(D)P-
r=1

(4.26)
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Set ¢ = (D13<6I3) D3 (2~ >-)) and write 64 instead of 04(|D(v)]). Since

2

Z 3$ (?:U] Z Z aazﬁxr Oz (4.27)

3,7=1 i=1r=1
and
0%v, ov 0%v3
=2Dg(—) — =1,2
Ox? 3(8x3) 0x30x N
827)3 _ 82111 _ 821}2
8.%% N 8%18%3 8x28m3 ’

we see that

2
(2)
IV@y| < C]ZZ = ax,, <], (4.28)
which leads (multiplying the last inequality by §k02_2) to
07 2|V v e, < CZZQP 2)7\& +e02(CIE (4.29)

i=1r=1

In order to estimate the last term in (4.29) we use (3.47), which can be
re-written as (see (3.43) and (3.48) for the definition of G = (G2,G1) and
A)

A(=1G-H, (4.30)
where H includes the remaining terms in (3.47). Thanks to (3.42) and (2.26),
H can be estimated by

|H|<CZ o 2‘ ”(SZ ‘qZ@P 2‘v

’I"S—

As (An,n) > Cob% *|n|?, we see that (4.30) together with the last inequality
yields

2
_ - _ ov
Cot%%¢| < 3G+ e > oy 2’%7
r=1
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Plugging this into (4.29) results in

0*v

O0x;0x,

072V v|g, < ¢|Gley + cZZ@P 2‘

=1 r=1

& (4.31)

With the help of the definition for Bin’ r=1,2 (cf. (3.17)), we deduce from
(4.31) that

2
52 VOv|E, < |Gl + ¢ ;;91) 2‘ 818‘;7" *
‘v@) ‘

Due to (3.11) we can arrange the covering of the boundary in such a way
that ¢ supq, | | < 1, which leads to

ov
orr

& . (4.32)

2
05 IV OVIE < Gl + ¢ 05|V
r=1

The inequality (4.26) will follow from (4.32) by taking the L9-norm of all
terms provided that we can estimate ||G&g||, in a suitable way. For this
purpose we proceed similarly to Section 3 using the curl-operator.

By the negative norm theorem (cf. the appendix, Theorem 6.7) and
equations (3.40) and (3.41) we have for s = 1,2 (cf. (3.43))

d 0 SN L
et = g el v 3 g gl
ov 0 0P
+ || curl (E +v.-Vv+ f)kafl,q + cHa_x?,ang kaH_Lq
=Is+---+1y. (4.33)
We easily see that
Ig+ Iy < c|]8®AHQ (4.34)

and
Is < e(f,vo) (1 + K7 + || || ). (4.35)
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Further, we get using (2.26) (¢’ = q/(¢ — 1))

0 09
I; < sup /! Afk—¢ }
Qo

pew (@) 0x, 0Dy, aDkl ox; Ox,  Ox;0x,
loll1,qr <1
) 1/q
§c< 07" >‘J|v |qggdm> + [0 all, - (4.36)
Qo

Now, using (4.33)—(4.36), (4.32) integrated over €2 and again the definition
of 52, we finally come to (4.26).

Step 3: Inequalities for the full second velocity gradient.

We are going to estimate the second gradient of the velocity putting (4.24),
(4.25) and (4.26) together. We first observe that by the Holder’s inequality
we have

_ o OV
1072V e g + 105729 il

< c(IVOvEllz + |

l2) 10411 %20 (4.37)

2

)”1+8(I)A| (P 2)2q *

(r—1)(2—q)

(2.
<e(Iv@ve
Requiring Wh4(Q) — L@ Ine=D (©2) we obtain the condition ¢ € [1, z%]
and

p—2 p=2
10004, < (1140047 + [ VORAIFT)

G-D(2-)
Using this, (4.37), Lemma 6.3, (4.24)—(4.26) and Lemma 6.12 we come to
the conclusion that

0
IV0@ally + IVOVly < e(lIEll2 + 275 + [[004]], + | 5 11,)

pf 8\’
e(1v0m A5+ 1 00l 7 ) (I8l K23 + [0@a]l,+ |5 ,)-

which yields with the help of Young’s inequality
ov
V0@ ally + IVOVlq < o1+ 1€z + K205 + [[004]], + [ 57 11,)

0 -1
(1l + K3+ H6<I>AH2+ Ha—ju )’” (438)

2p—3
e (18l + K2+ | S 1owalli™ + 1024057 ).
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Since 2;’%13 <p-—1forp>2and g%; is the dual exponent to p— 1 we finally

obtain by considering the r-th power of the inequality (r > 0)

8 7“(172—1)
V0D 4|1+ [| Vv < c(1+||f|]§+Ke,A+H@‘PAH;vLHa—:H;> , (4.39)

which we wanted to prove.
Step 4: Derivation of (4.16).

Taking the re=1) ¢y power of (4.24) and (4.25) and adding them to (4.39
2

we obtain the inequality with the right-hand side bounded by the right-hand
side of (4.39) (up to a multiplicative constant). Then we multiply the so-
obtained inequality by ’yL(EA) and integrate it with respect to time over

(0,T). Inequality (4.16) then easily follows by requiring w < 1 and also
taking (3.52) into account. O

We want to finish this section with four lemmas, which are consequences
of (3.52) and (4.16) if we pass to the limit as A — oo.

Lemma 4.40. Let p € [2,6). Then we have for almost allt € 1
t
IV ()13 < elt.vo) + | Kelr)dr (4.41)
0
Proof. From (3.52) for u = 0 and (2.23), we obtain
t
IVvEA D)3 < eff, vo) + / Kea(r)dr. (4.42)
0

From (4.14) and the lower semicontinuity of norms we immediately get
(4.41). O

Lemma 4.43. Letp € [2,3) and let vy, be defined as in Lemma 3.51, p > 0.
Then we have for almost all t € I

esssupv,(E(7)) < ¢(f, vo) +/ K.(7) 7, (E(T))dT, (4.44)
7€(0,t) 0

where E(t) = 1+ ||®(|D(vE(1))|?)]|1-

Proof. First we will show that for almost all ¢t € I

lim @A(|D(v6~4(t))|2)dx:/@(|D(v6(t))\2)dx. (4.45)
Q Q

A—oo
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We have
| [ a0y do— [ oD () dal
<| [ @a(DE @R o~ [ Ba(DEAO)P) ds (4.46)
+| [ @aDE O o~ [ 2D (0)F) da| = 11+ I
From (2.27) and (2.23), follows
I < C(1+ [V A2 + [T 127 [TV () = Vv (),

which together with (4.12)4 gives for almost all t € T

lim [ =0, (4.47)

since Z% > p for p € [2,3). Further, from the definition of ®4 (cf. (2.17))
we see that

I = | (D (1)) dz — (ID(v(t)[*) dar| . (4.48)
{#ID(ve (1,2)|24)

But from (4.12)5 we get for almost all t € T

Alim {z: |ID(v°(t,z))| > A} =0. (4.49)
This and the bound |®4(|D(v¢)[?) — &(|D(v)[?)| < (1 + |D(v®)|P) gives
Alim I, = 0, which together with (4.47) proves (4.45). This in turn implies

that
Yu(Ea(t)) — vu(E(t)) for almost every t € I,

/ * / * - 0o (450)
Yy (Ea(t)) — Yy (E(t)) weakly-* in L>(1).
Furthermore, we have (cf. (4.14))
/ VoA P IVveA 2 de — / [ve|?|Vve|? da in L*(I). (4.51)
Q Q

Since the first term in (3.52) is nonnegative we can pass to the limit in (3.52)
as A — oo due to (4.50) and (4.51). This gives (4.44). O
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Lemma 4.52. Let p € [2,3) and let vy, be as in Lemma 3.51, p > 0. Then
we have for all g € [ %] and all r € [1, Z%]
T

T
/0 IVOB(D (v (1) )[4, (1)) di + / ZEOL(EW) At (4.53)

0

T T
<ltvo) (1+ | K0 (BW)de+ [ 100D (1)) BB i)

where

2 € rp—1)
200 = (IVOv: el + 3 I D)

r=1

Proof. Let us for simplicity denote v(s) = 7,(s). In Lemma 4.15 we proved
for r < %
P
T T
| 1900 A(DE Py (Ba®)de + [ 26 A0 (Bato)de
0 0 (4.54)

T T
oltv0) (14 | Koy (Ba() e+ [ 004D P)E (Balt) dt).
0 0
Since ® 4 approximates ® locally uniformly we get from (4.12)5 that
0P A(ID(vS))?) — 09(|D(vF)|?) almost everywhere in Qr. (4.55)

From (4.6) and (4.9) we obtain®

8% 4([D(vS4)[2) s bounded in L3G-D (Qr), (4.56)
which together with (cf. (2.25), (2.23)4)
0D A(|AP)] < e(1+ AP

5Here we use the following parabolic imbedding: the space L (I; L () N L™(I;

W14(Q)) is continuously imbedded into L™ (Qr), where 7 = 2(3+€§, which follows from

the interpolation inequality ||ulls < ||uH ||u|| with o = %.

q
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and Vitali’s convergence lemma gives (for p € [2,3))
0P 4(ID(ve)?) — 0®(|D(vF)[?) strongly in L*(Qr) . (4.57)

Thus, (4.57) and (4.50)2 enable the limiting process in the second term on
the right-hand side of (4.54). Similarly, using (4.14) and (4.50)2, we can
justify the limiting process in the first term on the right-hand side in (4.54).
It remains to pass to the limit in the left-hand side of (4.54). For all ¢ < co
we have
Y (Ea(t)) — v (E(t)) strongly in L9(I).

Therefore, by the Egorov theorem we know that there is a set I, |1\ I5| <9,
and a subsequence As — oo such that

v (Eas(t)) =~ (E(t)) uniformly in I .
From this and boundedness of [|[VO®4(|D(v=4)|?)||7 in L*(I) we conclude
that

timinf | (1094, (D=4 2) (7' (B, (1) = ' (B(1) ) de = 0.

As—o0

Thus we have

fimint [ VO, (D)) ;7 (Ea(0) de
Is

As—o00
= lim inf V0D 4, (ID(vEA5)[?) |7 o/ (E(t)) dt . (4.58)
5§00 Is
Since
0<~'(E(t) <1 (4.59)

we can define by v = +/(E(t)) dt a new measure, which is absolutely continu-
ous with respect to dt. From (4.57) and (4.9) we can identify the weak limit
of VO® 4 in L"(I; L9(f2)) as VOP. From this, (4.59), the boundedness of the
right-hand side of (4.54) and the uniqueness of the weak limit we obtain that
VO® 4 (|DvEA|?) — VOd(|Dve|?) also in L™ (I, v; LY()), and therefore

liminf [ V0D 4, (D(ve4)2) |27/ (B (1)) dt
Is

5§00

= IVOR(ID(v) ")+ (E(t)) dt
s
Since § > 0 was arbitrary and the terms on the right-hand side of (4.54) are
bounded independent of § we can conclude the proof for the first quantity
on the left-hand side in (4.53) by a diagonal argument. The proof for the
second term on the left-hand side of (4.53) follows along the same lines. [J
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Lemma 4.60. Forp € [2,3), we have

T
/0 /Q(l—{—|D(VE )P 2<||V(2) 6£0H2+ZHD )ngQ) dx dit

v (1+ [ Kg(t)dt—i—/o [08(DO ()3 dt) . (461)

Proof. In Lemma 4.15 we proved

r A 2 (2),8,A e |12 & dvert 2
D(vS4) )P £, D
J) oAt (190w Al + 371D &) o

T T
c(f,v0)<1+/0 KE,AdH/O H(9<I>A(]D(VE’A)]2)H§dt>. (4.62)

We have already shown in the proof of the previous lemma that we can pass
to the limit as A — oo in the right-hand side of (4.62). For the left-hand
side we proceed similarly and use (4.12) and the Egorov theorem to conclude
that for all § > 0 there is a set Qs, |Q \ Q5| < d, and a subsequence As such
that

04, (ID(vS49))) = 1+ |D(v9)| uniformly in Qg .

Now we finish the proof along the lines of Lemma 4.52.

5. Limiting process ¢ — 0. In the previous section we obtained so-
lutions (v,m) = (v, 7°) of the Problem (NS-Dir);, that were based on
estimates independent of A. These estimates, however, were dependent on
e through K. = [, [VvE|*|Vve|?* dx, or precisely through fOT K, dt.

From the energy inequality (2. 8) for the Problem (NS-Dir);, Lemma 4.40
and Remark 4.13 we get for all p € [2,3) and almost all t € T

T T
ess S}lp [ve(t)]13 + / | Vve||2 dt + / [Vve|Pdt < c(f,vo), (5.1)
te

IV @113 < eff, vo) /K ) dr (5.2)

/‘av dt<cfv0 /K dt (5.3)
0

It is worth noticing that in addition to fOT | Vve||2 dt, which has already

occurred in (4.1) or (3.4), we now also obtain the estimate of fOT Vv dt
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in (5.1), as follows from (2.2). Moreover, we proved in Lemma 4.43 and
Lemma 4.52 that for u >0

esssup vy, (E(7)) < c(f, vo) +/ K (1) ’)/IL(E(T)) dr, (5.4)
7€(0,t) 0

T e T
/ IVod(ID(v(1))[*)] 75 WL(E(t))dt+/ Z(vE (1)) v, (E(1)) dt
0 o 0 (5.5)

T T
<eltvo) (14 [ KB+ [ 1003 E0)ar)

where v,(s) = ﬁsl_“, for pu > 0 and p # 1, and ~1(s) = In (s) and

Z(ve(t)) is defined in Lemma 4.52. Moreover, in the case u = 0 we also have
from Lemma 4.60

T 2 ove
€ - (2)+,&
f L e (Ve + S IPGGE) &) e

T T
<ctw)(1+ [ K@at [ oD OREY). 60

Let us make two observations. Firstly, if p € [0,1] in (5.4) and the right-
hand side is bounded, then {v®} lies in a ball of L>°(I;V},). If u > 1, then
inequality (5.4) gives us no information. Secondly, denoting

6(p—2)

I, o (t)= /Q 1+ DO DOV dr (5.7)

Py

and using Lemma 6.9, we obtain from (5.5) and (5.4) that

T Cpt1 T
(B (1)) + / TBO) 7 () dt + / Z(vE) 1 (E@)de (58)
T T
< c(f,vO>(1 + / VL (E(8) K- (t) dt + / VEO)VVISEY dt) ,

in which the first term is omitted if pu > 1.
Our last task is to estimate (uniformly with respect to €) the right-hand
sides of (5.2)—(5.4), (5.6) and (5.8).
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(i) The case p € [%,3). Let us first recall that by (2.4) the norm
|@(|D(v)|?)|1 is equivalent to [|[D(v)|[E. Thus, we can estimate K. in (5.4),
with g = 0, in the same way as in (2.13), and we obtain

V@Il < e(f, vo +6/ vl 5 vy Vvl dr,

which together with (5.1) and Gronwall’s lemma gives the fact that
v is bounded in L*(I;V,) (5.9)

uniformly with respect to . Thus fOT K. dt is bounded independent of € and
it remains to bound the second term on the right-hand sides of (5.6) and
(5.8) for p = 0. From (6.11) we deduce that

6(p—1) 6(p—1)

IVvllg™™ < Cis(1+vl,™™ +1, o (1), (5.10)

Pip+1

which together with the interpolation inequality

3(p—2) (4

_p#—p)
[VV]l2p-1) < [|[VV[T7ED ol T || Vv|| D

implies that

2(p—1) ( 2p(4-p) 6(p=2) (=2 (p+1)
R A o P (R I A i)
o (5.11)
@ e s, e
< dle(DE)P)IL" A+ Ie(DE)P)IFT + 1,707 7) .
We get from (5.8) (1 =0), (5.9) and the first inequality in (5.11)
T _pr T (p-2)(p+1)
/ 1750 (1) dtSC(f,Vo)(1+/ VAN () dt). (5.12)
o Pt 0 VpHT

However for p € [2,3) we see that the exponent on the right-hand side of
(5.12) is strictly less than the exponent on the left-hand side of (5.12). Thus
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the right-hand sides of (5.6) and (5.8) with = 0 are bounded independent
of €, and we proved that

T b2 E T . b2 8V6
[ 10+ DD B i+ [0+ D)) T DG

T 2
/ | — HQ dt + esssup||Vve(£) |12 +/ IVve (|7 dt < e(f,vo).  (5.13)
ot tel 0 p+1
From (5.13) and the Aubin-Lions lemma we obtain that for ¢ € [1, p%l)

Vv® — Vv in LP%(I; L1(Q)**3) | almost everywhere in Q7. (5.14)

Using (5.1), (5.13), (5.14), (2.3) and Vitali’s convergence lemma we pass
to the limit as ¢ — 0 in the weak formulation of (2.7)s. Concerning the
uniqueness we argue as in [11], Theorem 5.4.37.

(i) The case p € [2,12/5). We are going to estimate the terms on the
right-hand side of (5.8). For the convective term we have

Ke < cllVV[GIVVIPe < c| VvV Vvt

2(2 A) A 22 (p+1)

24 > 6(p—1)
< oDEPIL T 1+ [e(D@P)I +1%T ).,

where we have used the interpolation inequality ||z|| o < 2]}~ |z]|g with
oL
A=18=2 and1- )= % and (5.10). From this, (5.11) and (5.8) we
P P
obtain that (recall v, (s) = s7#)

(B + TE(trﬂf;@?” (t)at (5.15)

o(f, vo) <1+/ E(t "“dt+/ E(t)” 7 2-p g

/ {E l,LIB(p 1)( )}B(G;”E( )p+2+#(3(p 2) _q) &t

+/ {E( MIS(p D )}AE(t)A—i——Q(Q;M +r(A-1) dt) )
0

’P+1

Requiring now for the first two integrals on the right-hand side that the
exponent is less than 1 yields

p=——, p2=—". (5.16)
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Note that for p € [2,3) pe < p1. Furthermore, we require for the third
integral on the right-hand side of (5.15)

3(p—2 p+2 3(p—2
2,1, [ e )—1)]7’31,
6—-p 6—-p 6—p
where % + % = 1, which implies
p—2
Hs = ———, 5.17
T 23-p) (5.17)
and for the fourth integral on the right-hand side
22—\
=1, [A+Q+M(A—1)]6’§1,
where % + % = 1, which gives
3—p
=2 . 5.18
H4 %—3 ( )

Note that for p € [2, %), we have pus < pg and py < pg, and therefore we
choose p = ju4, since E(t)~! < 1. By Young’s inequality and (5.1) we obtain

wE®)+ | " BT (1) di < off, o), (5.19)

Prpya

where the first term is omitted if g > 1. Note that
9
w<1 ifandonlyif p> 1

and therefore we obtain (5.9) for these p’s. Now we go again into (5.15) and
set © = 0. Using (5.9) and the fact that the exponents of the terms in the
squiggly brackets in (5.15) are strictly less than 1 we easily obtain that the
right-hand side of (5.15) is finite independent of e. This together with (5.6)
yields (5.12), and we can conclude the proof for these p’s as in case (i). Due
to the definition of Ip,ﬁ we get from (5.19) for all p € [2,9/4)

T 2
/O (1+ 19I2) ™ IVVI7 T de < eff, vo). (5.20)

Now we proceed analogously as in the Problem (NS-Per), (cf. [11], Chapter
5, pp. 237-238, or [9]) to obtain from (5.20) Vv® — Vv strongly in L!(Qr).
The proof of Theorem 1.17 is complete.

6. Appendix. Here we first collect some general auxiliary definitions and assertions
used in the previous text, and then we prove more technical assertions concerning the
potentials ® and ® 4.
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Proposition 6.1 (Korn’s inequality). Let 1 < p < oo and let Q C R? be of class CL.
Then there ezists a constant K, = Kp(§) such that the inequality

Kpl[vll1p < IDMV)lp (6.2)
is fulfilled for all v € Wy P (Q)%.

Proof.
See e.g. [14].

Lemma 6.3. Let 1 < p < oo and let Q C R? be a domain of class C1. Then there exists
a constant cp = cp(Q) such that for all v € Wol’p(ﬂ)d NW2r(Q)d
ep[VEV]p < ID(VV)|lp- (6.4)
Proof. The assertion follows immediately from the algebraic identity
62’Ui . ale(V) + 8Dij(v) . aDjk(V) )

O0x;0xy, O0x; oxy ox;

Lemma 6.5. Let Q C R? be a domain, 0Q € C! and let v.e WH2(Q)9, ¢ € D(Q). Then

/ |D(v)|2¢2 dz > 015/ |Vv|?e2 dx — 016/ [v|?|Ve)? de . (6.6)
Q Q Q
Proof. We have
/ D(v) DW)e2de = + [ 20 Do gy 1 i 0% 2y = 1y 11,
Q 2 Jq Ox; Ox; q Ox; Ox;

The integration by parts yields

1 . ov;  0¢ ov; . 0¢
I =~ [ |divv|?e2d / ovj _/ i
2 2/Q| WV dr | v e T ) Yo, S,

Thus we obtain

1 1
—/|Vv|2£2daz+—/ | divv|?¢2 da
2 Jo 2 Jq

= [ pwEea— [ o 8”]58% [ 67)]68%

1
g/ |D(v)|2£2da:+—/ | divv|?¢2 d:c—i——/ |Vv|2¢? da:—i—c/ [v|?|VE)? de,
Q 4 Jo 4 Jo Q

and the assertion follows.

Theorem 6.7 (On negative norms). Let 1 < p < oo and let v € Wol’p(Q)d. Then
there exists a constant such that

clivily < Vil-1,p +[[VVI-1,p - (6.8)

Proof. See e.g. [12].

In the rest of this section we assume that the potential ® satisfies (1.9)—(1.11). Then,
by Lemma 2.22, the potential ® 4 satisfies (2.23)—(2.26).

We denote I 4(v) = [(1+ [D(v))2P=2)|D(Vv)|4 dz.
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Lemma 6.9. Let p > 2 and q € [1,00). Then there exist constants Ci7, Cig and Cig
such that

Curlpg(¥) < [ [VORIDE)P) ds < Cuslyg(v) (610)
I9VIG e < Cro (L4 IVVIET™ + 1 q(v) (6.11)

Proof. We have

Ip.a(v) = /Q [(1+ D)) 2D(V)2] 2 (1 + D)) P~D# de

(1.10) ) q (p—2)4
[ 1050u2(D@)) D (V) - Du(vw)]E (1 + D)% da

< / VoR(ID()[%)|2 ID(VV)[# (1 + D)) P2 da

Young 1
< hpa(v) +e / VoR(D(v) )| dx,

which immediately gives the first inequality in (6.10). The second one follows easily from
the chain rule and (1.11). Further, we have

Ip,q<v>z/ V(1 + DDJ(1 + DN g = /\V<1+|D|)p 1o de

e
> e [ 4D Sar) T DY

(6.
> cHanq(Plj)gq — | vl —c,

which is (6.11).

Lemma 6.12. Let p > 2 and q € [1,00) and let x4 be the characteristic function of the
set {x € Q:|D(v(z))| < A}. Then there exist constants Cag, Ca1, Ca2 such that

Cao [ ((1+ D@2+ (14 A0 (1= 3)) DY) da
< [ 1vora(DE)P)ds (6.13)
Q
< Cor [ (14 D@D+ 1+ A1 = ) ID(TV) da,

and therefore

/ ID(Vv)|9 da < 022/ |VO® A (ID(V)[2)4 da . (6.14)
Q Q

Proof. We proceed analogously to the proof of Lemma 6.9 just using (2.24) instead of
(1.10) and (2.26) instead of (1.11).
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