Logo
   Nonlinear Partial Differential Equations
    Theoretical and Numerical Analysis
  
DFG-Forschergruppe



Home

Job Offers
Events
People
Projects
History
Links


 
Project A.1
  1. Ambrosio, L., Deckelnick, K., Dziuk, G., Mimura, M., Solonnikov, V.A. und Soner, H.M. (Hrsgb.), Mathematical aspects of evolving interfaces, Springer, Berlin-Heidelberg-New York, 2003.
  2. Clarenz, U., Dziuk, G. und Rumpf, M., On generalized mean curvature flow in surface processing, in Geometric Analysis and Nonlinear Partial Differential Equations, (S. Hildebrandt, H. Karcher, Hrsgb.), 217--248, Springer, Berlin-Heidelberg-New York, 2003.
  3. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M. und Rusu, R., A finite element method for surface restoration with smooth boundary conditions, Comp. Aid. Geom. Des. 21 (2004), 427--445.
  4. Deckelnick, K. und Dziuk, G.,  A finite element level set method for anisotropic mean curvature flow with space dependent weight, S. Hildebrandt (ed.) et al., Geometric analysis and nonlinear partial differential equations. Berlin: Springer, 249--264 (2003).
  5. Deckelnick, K. und Dziuk, G., Numerical approximations of mean curvature of graphs and level sets, in Mathematical aspects of evolving interfaces, (L. Ambrosio, K. Deckelnick, G. Dziuk, M. Mimura, V. A. Solonnikov und H. M. Soner, Hrsgb.), 53--87, Springer, Berlin-Heidelberg-New York, 2003.
  6. Deckelnick, K. und Dziuk, G., Mean curvature flow and related topics, in Frontiers in numerical analysis (Blowey, J. et al. Hrsgb.), 63--108, Springer, Berlin--Heidelberg--New York, 2003.
  7. Deckelnick, K. und Dziuk, G., Error estimates for the Willmore flow of graphs, Preprint Math. Fak. Univ. Freiburg 04-25 (2004).
  8. Deckelnick, K. und Dziuk, G., Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8, no. 1, 21--46 (2006).
  9. Deckelnick, K., Dziuk, G. und Elliott, C. M., Error analysis of a semidiscrete numerical scheme for diffusion in axially symmetric surfaces, SIAM J. Numer. Anal., 41, no. 6 , 2161--2179 (2003).
  10. Deckelnick, K., Dziuk, G. und Elliott, C. M., Fully discrete semi-implicit second order splitting for anisotropic surface diffusion of graphs,  SIAM J. Numer. Anal. 43, no. 3, 1112--1138 (2005).
  11. Deckelnick, K., Dziuk, G. und Elliott, C. M., Computation of geometric PDEs and mean curvature flow, Acta Numerica 14, 139--232 (2005).
  12. Demlow, A., Dziuk, G., An adaptive finite element method for the Laplace-Beltrami operator on implicity defined surfaces. SIAM J. Numer. Anal. 45, no. 1, 421--442 (2007).
  13. Dörfler, W. und Siebert, K. G., An adaptive finite element method for minimal surfaces, in Geometric Analysis and Nonlinear Partial Differential Equations, (S. Hildebrandt, H. Karcher, Hrsgb.), 147--175, Springer, Berlin-Heidelberg-New York, 2003.
  14. Dziuk, G.,  Computational parametric Willmore flows, Preprint Fak. Math. Phys. Univ. Freiburg 07-13 (2007), submitted.
  15. Dziuk, G. und Elliott, C. M., Eulerian finite element method for parabolic PDEs on implicit surfaces, Preprint Fak. Math. Phys. Univ. Freiburg 06-11 (2006), submitted.
  16. Dziuk, G. und Elliott, C. M., Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, no. 2, 262--292 (2007).
  17. Dziuk, G. und Elliott, C. M., Surface finite elements for parabolic equations. J. Comp. Math. 25, no. 4, 385--407 (2007).
  18. Dziuk, G. und Elliott, C. M.,  An Eulerian level set method for partial differential equations on evolving surfaces, Preprint Fak. Math. Phys. Univ. Freiburg 07-09 (2007), submitted.
  19. Dziuk, G. und Hutchinson, J. E., Finite element approximations to surfaces of prescribed variable mean curvature, Numer. Math. 102,   no. 4, 611--648 (2006).
  20. Dziuk, G., Kuwert, E. und Schätzle, R., Evolution of elastic curves in Rn: Existence and computation, SIAM J. Math. Anal. 33, 1228-1245 (2002).
  21. Fried, M., Image segmentation using adaptive finite elements, Preprint Math. Fak. Univ. Freiburg 03-26 (2003).
  22. Fried, M., A finite element approach to multichannel image segmentation and denoising, in preparation.
  23. Fried, M., A level set based finite element algorithm for the simulation of dendritic growth, Computing and Visualization in Science 7, 97--110 (2004).
  24. Müller, O., Numerik für Minimalflächen im Minkowskiraum, Dissertation Freiburg (2003).
  25. Müller, O., Numerical methods for minimal surfaces in Minkowskian space time, Preprint Math. Fak. Univ. Freiburg 04-01 (2004).
  26. Pozzi, P., Anisotropic curve shortening flow in higher codimension, Math. Methods Appl. Sci. 30, no. 11, 1243-1281 (2007).
  27. Pozzi, P., Anisotropic mean curvature flow for two dimensional surfaces in higher codimension: a numerical scheme, Preprint Fak. Math. Phys. Univ. Freiburg 07-12 (2007).


Project A.2
  1. Bauer, M. und Kuwert, E., Existence of minimizing Willmore surfaces of prescribed genus, Int. Math. Research Notices 10 (2003), 553--576.
  2. Clarenz, U., The Wulff-shape minimizes an anisotropic Willmore functional,  Interfaces Free Bound. 6, no. 3, 351--359 (2004).
  3. Dziuk, G., Kuwert, E. und Schätzle, R., Evolution of elastic curves in Rn: Existence and computation, SIAM J. Math. Anal., 33, (2002), 1228-1245.
  4. Kuwert, E., Schätzle, R., Gradient flow for the Willmore functional, Commun. Analysis Geom. 10, 281-326 (2002).
  5. Kuwert, E., Schätzle, R., Removability of point singularities of Willmore surfaces, Ann. of Math.(2) 160, no. 1, 315--357 (2004).
  6. Kuwert, E., Schätzle, R., Branch points for Willmore surfaces, Duke Math. Journal 138, no. 2, 179--201 (2007). 
  7. Kuwert, E., Schätzle, R., Closed surfaces with bounds on their Willmore energy, Preprint 2007.
  8. Lamm, T., Fourth order approximation of harmonic maps from surfaces, Calc. Var. Partial Differential Equations 27, no. 2, 125--157 (2006).
  9. Weitkamp, S., A new proof of the uniformization theorem. Ann. Global Anal. Geom. 27 , no. 2, 157--177 (2005).


Project A.3
  1.  Röger, M., Schätzle, R.,  On a modified conjecture of De Giorgi, Mathematische Zeitschrift 254, 675-714 (2006).


Project B.1
  1. Ansorge, M., Existenz von ganzen selbstschnittfreien holomorphen Kurven auf fastkomplexen 4-Tori. Preprint Math. Fak. Univ. Freiburg (2005).   
  2. Auer, F. , Bangert, V., Differentiability of the stable norm in codimension one, Preprint Math. Fak. Univ. Freiburg (2004). 
  3. F.Auer und V.Bangert: Differentiability of the stable norm in  codimension one, Amer. J. Math. 128, 215-238 (2006). 
  4. V.Bangert, C.Croke, S.V.Ivanov and M.G.Katz: Boundary case of equality in optimal Loewner-type inequalities, Transactions Amer. Math. Soc. 359, 1-17 (2007). 


Project B.2
  1. Dedner, A., Happe, R.T., Kröner, D., Computations of minimal orbits, Preprint 2004.  
     
  2. Dedner, A., Rohde, C., Schupp, B., und Wesenberg, M., A Parallel, Load Balanced MHD Code on Locally Adapted, Unstructured Grids in 3D, Comput. Vis. Sci. 7, 79-96 (2004).

Project C.1
  1. Bamberger, A., Bänsch, E. und Siebert, K.G., Experimental and numerical investigation of edge tones, ZAMM 84, 632-646 (2004).
  2. Cascon, J.M., Kreuzer, C., Nochetto, R.H. and Siebert, K.G., Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method.  Preprint  Fak. Math. Phys. Univ. Freiburg 07-10 (2007).
  3. Cascon, J.M., Nochetto, R.H. and Siebert, K.G., Design and Convergence of AFEM in H div, Preprint Augsburg 2006, to appear in Mathematical Models & Methods in Applied Sciences.
  4. Diening, L., Stress-Stabilization for Generalized Newtonian Fluids, in preparation.
  5. Diening, L., Ebmeyer, C. und Ruzicka, M., Optimal Convergence for the Implicit Space-Time Discretization of Parabolic Systems with p-Structure, in preparation.
  6. Diening, L. and Kreuzer, C.Linear Convergence of an adaptive finite element method for  the p-Laplacian equation, to appear in SIAM Journal on Numerical Analysis.
  7. Diening, L., Prohl, A. und Ruzicka, M., On Time-Discretizations for Generalized Newtonian Fluids, Nonlinear Problems in Mathematical Physics and Related Topics II (V. Solonnikov, N.N. Uraltseva, M. Sh. Birman, S. Hildebrandt, ed.), Kluwer/Plenum, New York, 2002,  In Honour of Professor O.A. Ladyzhenskaya, pp. 89--118.
  8. Diening, L., Prohl, A. und Ruzicka, M., On Semi-Implicit Time-Discretization for Motions of Incompressible Fluids with Shear Dependent Viscosities: The Case p ≤ 2, in preparation.
  9. Diening, L. und Ruzicka, M., Calderon-Zygmund Operators on Generalized Lebesgue Spaces Lp(.) and Problems Related to Fluid Dynamics, J. Reine Ang. Math. 563, 197--220 (2003).
  10. Diening, L. und Ruzicka, M., Singular Integrals on the Halfspace in Generalized Lebesgue Spaces Lp(.), Part I, JMAA 298 , 559--571 (2004).
  11. Diening, L. und Ruzicka, M., Singular Integrals on the Halfspace in Generalized Lebesgue Spaces Lp(.), Part II, JMAA 298 , 572--588 (2004).
  12. Diening, L. und Ruzicka, M., Strong Solutions for Generalized Newtonian Fluids, J. Math. Fluid Mech. 7, no. 3, 413--450 (2005).
  13. Köster, D., Ein effizienter Vorkonditionierer für das Quasi-Oseen-Problem, Diplomarbeit Freiburg 2003.
  14. Marsden, S., Stationäre Strömungen von elektrorheologischen Fluiden, Diplomarbeit Freiburg (2004).
  15. Morin, P., Siebert, K.G. and Veeser, A., Convergence of finite elements adapted for weaker norms,  to appear in Applied and Industrial Matematics in Italy - II.
  16. Morin, P., Siebert, K.G. and Veeser, A., A Basic Convergence Result for Conforming Adaptive Finite Elements, Preprint Fak. Math. Phys. Univ. Freiburg 07-05 (2007).
  17. Nochetto, R.H., Schmidt, A., Siebert, K.G., Veeser, A., Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations, Numer. Math. 104,  no. 4, 515-538 (2006).
  18. Nochetto, R.H., Siebert, K.G., Veeser, A., Fully Localized A~Posteriori Error Estimators and Barrier Sets for Contact Problems, SIAM Journal of Numerical Analysis 42, no. 5, 2118-2135 (2005).
  19. Ruzicka, M., Modeling, Mathematical and Numerical Analysis of Electrorheological Fluids, Appl. Math. 49 (2004).
  20. Schmidt, A. und Siebert, K.G., Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, in Lecture Notes in Computational Science and Engineering 42, Springer, 2004.
  21. Siebert, K.G., Veeser, A., A unilaterally constrained quadratic minimization with adaptive finite elements,  to appear in Siam Journal on Optimization.


Project C.2
  1. Bamberger, A., Bänsch, E. und Siebert, K.G., Experimental and numerical investigation of edge tones, ZAMM 84 (2004), 632--646.
  2. Ganter, A., Hoppe, R.H., Köster, D., Siebert, K.G. and Wixforth, A., Numerical Simulation of Piezoelectrically Agitated Surface Acoustic Waves on Microfluidic Biochips, Computing DOI 10.1007/s00791-006-0040-y (2006)
  3. Mehnert, J., Konvergenz eines semidiskreten Verfahrens zu einem Modellproblem mit Kapillarrandbedingung, Dissertation Freiburg 2004.
  4. Schmidt, A. und Siebert, K.G., Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, in Lecture Notes in Computational Science and Engineering 42, Springer, 2004.


Project C.3
  1. Coquel, F., Diehl, D., Merkle, C. and Rohde, C., Sharp and Diffuse Interface Methods for Phase-Transition Problems in Liquid-Vapour Flows,  Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys., 7, Eur. Math. Soc., Zürich, 239--270 (2005).
  2. Dressel, A., Yong, W.-A., Travelling-wave solutions for hyperbolic systems of balamce laws. Proceedings of the 11th International Conference on Hyperbolic Problems, Lyon, France, July 17--21, 2006.
  3. Dressel, A., Rohde, C., Global existence and uniqueness of solutions for a  viscoelastic two-phase model with nonlocal capillarity, to appear in I  Indiana Univ. Math. J.
  4. Dressel, A., Rohde, C.,  Time-asymptotic behaviour of weak solutions for a viscoelastic two-phase model  with nonlocal capillarity, submitted.
  5. Merkle, C., Rohde, C., Computation of dynamical phase transitions in solids. Appl. Numer. Math. 56 , no. 10-11, 1450--1463 (2006).
  6. Merkle, C., Dynamical Phase Transitions in Compressible Media. Math. Inst., Universität Freiburg (2006).
  7. Merkle, C. and Rohde, C., Computation of Dynamical Phase Transitions in Solids, Preprint Math. Fak. Univ. Freiburg, 04-21 (2004).
  8. Merkle, C. and Rohde, C., A Ghost--Fluid like Numerical Algorithm for Phase--Transition Problems in 1D, in preparation.
  9. Merkle, C. and Rohde, C., The Sharp-Interface Approach for Fluids with Phase Change: Riemann Problems and Ghost Fluid Techniques, Preprint Fak. Math. Phys. Univ. Freiburg 06-05 (2006), submitted to: ESAIM: Mathematical Modelling and Numerical Analysis.
  10. Rohde, C., Scalar Conservation Laws with Mixed Local and Non-Local Diffusion-Dispersion Terms, SIAM J. Math. Anal. 37, no. 1, 103--129 (2005).
  11. Rohde, C., Approximation of Solutions of Conservation Laws by Non-Local Regularization and Discretization, Habilitation Freiburg 2004.
  12. Rohde, C., Phase Transitions and Sharp-Interface Limits for the 1D-Elasticity System with Non-Local Energy, Interfaces Free Bound. 7, no. 1, 107--129 (2005).
  13. Rohde, C., On Local and Non-Local Navier-Stokes-Korteweg Systems for Liquid-Vapour Phase Transitions, Zeit. f. angew. Math. und Mechanik  85, no. 12, 839--857 (2005).
  14. Rohde, C. and Thanh, M.D., Global Existence for Phase Transition Problems via a Variational Scheme, J. Hyperbolic Differential Equations 1, no. 4, 747--768 (2004).
  15. Rohde, C., Scalar conservation laws with mixed local and nonlocal  diffusion-dispersion terms. SIAM J. Math. Anal. 37 , no. 1,  103--129 (2005).
  16. Rohde, C. and Thanh, M.D., Global existence for phase transition problems via a variational scheme. J. Hyperbolic Differ. Equ. 1, no. 4, 747--768 (2004).

 

Last update: 21-10-2004 17:16:35.