|
|
Project
A.1
- Ambrosio,
L., Deckelnick, K., Dziuk, G., Mimura, M., Solonnikov, V.A. und Soner,
H.M. (Hrsgb.), Mathematical aspects of evolving interfaces, Springer,
Berlin-Heidelberg-New York, 2003.
- Clarenz, U., Dziuk, G. und Rumpf,
M., On generalized
mean
curvature flow in surface processing, in Geometric Analysis and
Nonlinear Partial Differential Equations, (S. Hildebrandt, H.
Karcher, Hrsgb.), 217--248, Springer, Berlin-Heidelberg-New York, 2003.
- Clarenz, U.,
Diewald, U., Dziuk, G., Rumpf, M. und
Rusu, R., A
finite element method for surface restoration with smooth boundary
conditions, Comp. Aid. Geom. Des. 21 (2004), 427--445.
- Deckelnick, K. und Dziuk, G.,
A finite element level set method for anisotropic mean curvature flow
with space dependent weight, S. Hildebrandt (ed.) et al., Geometric analysis and nonlinear partial
differential equations. Berlin: Springer, 249--264 (2003).
- Deckelnick, K. und Dziuk, G., Numerical
approximations of mean curvature of graphs and level sets, in Mathematical
aspects of evolving interfaces, (L. Ambrosio, K. Deckelnick, G.
Dziuk, M. Mimura, V. A. Solonnikov und H. M. Soner, Hrsgb.), 53--87,
Springer, Berlin-Heidelberg-New York, 2003.
- Deckelnick, K. und Dziuk, G., Mean curvature flow
and
related topics, in Frontiers in numerical analysis (Blowey,
J. et al. Hrsgb.), 63--108, Springer, Berlin--Heidelberg--New York,
2003.
- Deckelnick, K. und Dziuk, G., Error
estimates for
the
Willmore flow of graphs, Preprint Math. Fak. Univ. Freiburg 04-25
(2004).
- Deckelnick, K. und Dziuk, G., Error
analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8, no. 1, 21--46 (2006).
- Deckelnick, K., Dziuk, G. und Elliott, C. M., Error
analysis of a
semidiscrete numerical scheme for diffusion in axially symmetric
surfaces, SIAM J. Numer. Anal., 41, no. 6 , 2161--2179 (2003).
- Deckelnick, K., Dziuk, G. und Elliott, C. M., Fully
discrete semi-implicit second order splitting for anisotropic surface
diffusion of graphs, SIAM J. Numer. Anal. 43, no. 3, 1112--1138 (2005).
- Deckelnick, K., Dziuk, G. und Elliott, C. M.,
Computation of geometric PDEs and mean curvature flow, Acta
Numerica 14, 139--232
(2005).
- Demlow, A., Dziuk, G., An adaptive finite element
method for the Laplace-Beltrami operator on implicity defined surfaces.
SIAM J. Numer. Anal. 45, no. 1, 421--442 (2007).
- Dörfler, W. und Siebert, K. G., An adaptive
finite element method for minimal surfaces, in Geometric Analysis
and Nonlinear Partial Differential Equations, (S. Hildebrandt, H.
Karcher, Hrsgb.), 147--175, Springer, Berlin-Heidelberg-New York, 2003.
- Dziuk, G., Computational
parametric Willmore flows, Preprint Fak. Math. Phys. Univ. Freiburg 07-13
(2007), submitted.
- Dziuk, G. und Elliott, C. M.,
Eulerian finite element method for parabolic PDEs on implicit surfaces,
Preprint Fak. Math. Phys. Univ. Freiburg 06-11
(2006), submitted.
- Dziuk, G. und
Elliott, C. M., Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, no. 2, 262--292 (2007).
- Dziuk, G. und Elliott, C. M.,
Surface finite elements for parabolic equations. J. Comp. Math. 25, no. 4, 385--407 (2007).
- Dziuk, G. und Elliott, C. M.,
An Eulerian level set method for partial differential equations on
evolving surfaces, Preprint Fak. Math. Phys. Univ. Freiburg 07-09
(2007), submitted.
- Dziuk, G. und Hutchinson, J. E., Finite element
approximations to surfaces of prescribed variable mean curvature, Numer. Math. 102, no. 4, 611--648
(2006).
- Dziuk, G., Kuwert, E. und Schätzle, R.,
Evolution of elastic curves in Rn: Existence and
computation, SIAM J. Math. Anal. 33,
1228-1245 (2002).
- Fried, M., Image segmentation using adaptive finite
elements, Preprint Math. Fak. Univ. Freiburg 03-26 (2003).
- Fried, M., A finite element approach to multichannel
image segmentation and denoising, in preparation.
- Fried, M., A level set based finite element
algorithm for the
simulation of dendritic growth, Computing and Visualization in
Science 7, 97--110 (2004).
- Müller, O., Numerik für
Minimalflächen
im Minkowskiraum, Dissertation Freiburg (2003).
- Müller, O., Numerical methods for minimal
surfaces in Minkowskian space time, Preprint Math. Fak. Univ. Freiburg 04-01
(2004).
- Pozzi, P., Anisotropic
curve shortening flow in higher codimension, Math. Methods Appl. Sci. 30, no. 11, 1243-1281 (2007).
- Pozzi, P., Anisotropic mean curvature flow for two
dimensional surfaces in higher codimension: a numerical scheme,
Preprint Fak. Math. Phys. Univ. Freiburg 07-12 (2007).
Project A.2
- Bauer, M.
und Kuwert, E., Existence of minimizing Willmore surfaces
of prescribed genus, Int. Math. Research Notices 10
(2003), 553--576.
- Clarenz, U., The Wulff-shape minimizes an
anisotropic Willmore
functional, Interfaces Free Bound. 6, no. 3, 351--359 (2004).
- Dziuk, G., Kuwert, E. und Schätzle, R.,
Evolution of elastic
curves in Rn:
Existence and computation, SIAM J. Math.
Anal., 33, (2002), 1228-1245.
- Kuwert, E.,
Schätzle, R., Gradient flow for
the Willmore
functional, Commun. Analysis Geom. 10, 281-326 (2002).
- Kuwert, E., Schätzle, R.,
Removability of
point
singularities of Willmore surfaces, Ann.
of Math.(2) 160,
no. 1, 315--357
(2004).
- Kuwert,
E.,
Schätzle, R., Branch points for
Willmore surfaces, Duke Math. Journal
138, no. 2,
179--201 (2007).
- Kuwert, E.,
Schätzle, R., Closed surfaces with
bounds on their Willmore energy, Preprint 2007.
- Lamm, T., Fourth order approximation of harmonic
maps from
surfaces, Calc. Var. Partial Differential Equations 27, no. 2, 125--157 (2006).
- Weitkamp, S., A new proof of
the uniformization theorem. Ann. Global Anal. Geom. 27 , no. 2, 157--177 (2005).
Project
A.3
- Röger,
M.,
Schätzle, R., On a modified
conjecture of De Giorgi, Mathematische Zeitschrift 254, 675-714 (2006).
Project B.1
-
Ansorge, M., Existenz von ganzen selbstschnittfreien holomorphen Kurven auf fastkomplexen 4-Tori. Preprint Math. Fak. Univ. Freiburg (2005).
-
Auer, F. , Bangert, V., Differentiability of the stable norm in codimension one, Preprint Math. Fak. Univ. Freiburg (2004).
-
F.Auer und V.Bangert: Differentiability of the stable norm in codimension one, Amer. J. Math. 128, 215-238 (2006).
-
V.Bangert, C.Croke, S.V.Ivanov and M.G.Katz: Boundary case of equality in optimal Loewner-type inequalities, Transactions Amer. Math. Soc. 359, 1-17 (2007).
Project B.2
- Dedner,
A.,
Happe, R.T., Kröner, D., Computations of minimal orbits, Preprint
2004.
- Dedner, A., Rohde, C., Schupp, B.,
und Wesenberg,
M.,
A Parallel, Load Balanced MHD Code on Locally Adapted, Unstructured
Grids in 3D, Comput. Vis. Sci. 7, 79-96 (2004).
Project C.1
- Bamberger,
A., Bänsch, E. und Siebert, K.G., Experimental and numerical
investigation of edge tones, ZAMM 84, 632-646 (2004).
- Cascon,
J.M., Kreuzer, C., Nochetto, R.H. and Siebert, K.G., Quasi-Optimal
Convergence Rate for an Adaptive Finite
Element Method. Preprint
Fak. Math. Phys. Univ. Freiburg 07-10 (2007).
- Cascon,
J.M., Nochetto, R.H. and Siebert, K.G., Design and
Convergence of AFEM in H div, Preprint Augsburg 2006, to appear in Mathematical Models & Methods in
Applied Sciences.
- Diening, L., Stress-Stabilization for Generalized
Newtonian Fluids, in preparation.
- Diening, L., Ebmeyer, C. und Ruzicka, M., Optimal
Convergence for
the Implicit Space-Time Discretization of Parabolic Systems with
p-Structure, in preparation.
- Diening,
L. and Kreuzer, C., Linear Convergence of
an adaptive finite element method for the p-Laplacian equation, to appear in SIAM Journal on Numerical Analysis.
- Diening, L., Prohl, A. und Ruzicka, M., On
Time-Discretizations
for Generalized Newtonian Fluids, Nonlinear
Problems in Mathematical
Physics and Related Topics II (V. Solonnikov, N.N. Uraltseva, M. Sh.
Birman, S. Hildebrandt, ed.), Kluwer/Plenum, New York, 2002, In
Honour
of Professor O.A. Ladyzhenskaya, pp. 89--118.
- Diening, L., Prohl, A. und Ruzicka, M., On
Semi-Implicit
Time-Discretization for Motions of Incompressible Fluids with Shear
Dependent Viscosities: The Case p ≤
2, in preparation.
- Diening, L. und Ruzicka, M., Calderon-Zygmund
Operators on
Generalized Lebesgue Spaces Lp(.) and Problems Related to
Fluid Dynamics, J. Reine Ang. Math. 563,
197--220 (2003).
- Diening, L. und Ruzicka, M., Singular Integrals on
the Halfspace
in Generalized Lebesgue Spaces Lp(.), Part I, JMAA 298
, 559--571 (2004).
- Diening, L. und Ruzicka, M., Singular Integrals on
the Halfspace
in Generalized Lebesgue Spaces Lp(.), Part II, JMAA 298
, 572--588 (2004).
- Diening, L. und Ruzicka, M., Strong Solutions for
Generalized
Newtonian Fluids, J. Math. Fluid Mech. 7, no. 3, 413--450 (2005).
- Köster, D., Ein effizienter Vorkonditionierer
für das
Quasi-Oseen-Problem, Diplomarbeit Freiburg 2003.
- Marsden, S., Stationäre Strömungen von
elektrorheologischen Fluiden, Diplomarbeit Freiburg (2004).
- Morin,
P., Siebert, K.G. and Veeser, A., Convergence of finite
elements adapted for weaker norms, to appear in Applied and Industrial Matematics in Italy
- II.
- Morin,
P., Siebert, K.G. and Veeser, A., A Basic Convergence
Result for Conforming Adaptive Finite Elements, Preprint Fak. Math. Phys. Univ. Freiburg 07-05 (2007).
- Nochetto,
R.H., Schmidt, A., Siebert, K.G., Veeser, A., Pointwise A
Posteriori Error Estimates for Monotone Semi-linear
Equations, Numer. Math. 104, no. 4, 515-538 (2006).
- Nochetto,
R.H., Siebert, K.G., Veeser, A., Fully Localized
A~Posteriori Error Estimators and Barrier Sets for Contact
Problems, SIAM Journal of Numerical Analysis 42, no. 5, 2118-2135 (2005).
- Ruzicka, M., Modeling, Mathematical and Numerical
Analysis of
Electrorheological Fluids, Appl. Math. 49 (2004).
- Schmidt, A. und Siebert, K.G., Design of Adaptive
Finite Element
Software: The Finite Element Toolbox ALBERTA, in Lecture Notes in
Computational Science and Engineering 42, Springer, 2004.
- Siebert,
K.G., Veeser, A., A unilaterally constrained quadratic
minimization with adaptive finite elements, to appear in Siam Journal on Optimization.
Project C.2
- Bamberger,
A., Bänsch, E. und Siebert, K.G., Experimental and numerical
investigation of edge tones, ZAMM 84 (2004), 632--646.
- Ganter,
A., Hoppe, R.H., Köster, D., Siebert, K.G. and Wixforth, A., Numerical
Simulation of Piezoelectrically Agitated Surface
Acoustic Waves on Microfluidic Biochips, Computing DOI
10.1007/s00791-006-0040-y (2006)
- Mehnert, J., Konvergenz eines semidiskreten
Verfahrens zu einem
Modellproblem mit Kapillarrandbedingung, Dissertation Freiburg 2004.
- Schmidt, A. und Siebert, K.G., Design of Adaptive
Finite Element
Software: The Finite Element Toolbox ALBERTA, in Lecture Notes in
Computational Science and Engineering 42, Springer, 2004.
Project C.3
- Coquel, F.,
Diehl, D., Merkle, C. and Rohde, C., Sharp and Diffuse Interface
Methods
for Phase-Transition Problems in Liquid-Vapour Flows,
Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys., 7, Eur. Math. Soc., Zürich,
239--270
(2005).
- Dressel,
A., Yong, W.-A., Travelling-wave solutions for hyperbolic systems of
balamce laws. Proceedings of the
11th International Conference on Hyperbolic Problems, Lyon, France,
July 17--21, 2006.
- Dressel,
A., Rohde, C., Global existence and uniqueness of solutions for a
viscoelastic two-phase model with nonlocal capillarity, to appear in
I Indiana Univ. Math. J.
- Dressel,
A., Rohde, C., Time-asymptotic behaviour of weak
solutions for a viscoelastic two-phase model with nonlocal
capillarity, submitted.
- Merkle, C., Rohde, C.,
Computation of dynamical phase transitions in
solids. Appl. Numer. Math. 56 , no. 10-11, 1450--1463 (2006).
- Merkle, C., Dynamical
Phase Transitions in Compressible Media. Math. Inst.,
Universität Freiburg (2006).
- Merkle, C. and Rohde, C.,
Computation of Dynamical
Phase
Transitions in Solids, Preprint Math. Fak. Univ. Freiburg, 04-21 (2004).
- Merkle, C.
and Rohde, C., A Ghost--Fluid like
Numerical Algorithm
for Phase--Transition Problems in 1D, in preparation.
- Merkle,
C. and Rohde, C., The Sharp-Interface Approach for Fluids with Phase
Change: Riemann Problems and Ghost Fluid Techniques, Preprint Fak.
Math. Phys. Univ. Freiburg 06-05
(2006), submitted to:
ESAIM: Mathematical Modelling and Numerical Analysis.
- Rohde, C.,
Scalar Conservation Laws with Mixed Local
and Non-Local
Diffusion-Dispersion Terms, SIAM J. Math. Anal. 37, no. 1, 103--129 (2005).
- Rohde, C., Approximation of
Solutions of
Conservation Laws by
Non-Local Regularization and Discretization, Habilitation Freiburg 2004.
- Rohde, C.,
Phase Transitions and Sharp-Interface
Limits for the
1D-Elasticity System with Non-Local Energy, Interfaces Free Bound. 7, no. 1, 107--129 (2005).
- Rohde, C.,
On Local and Non-Local
Navier-Stokes-Korteweg Systems
for Liquid-Vapour Phase Transitions, Zeit. f. angew. Math. und
Mechanik 85, no.
12, 839--857 (2005).
- Rohde, C.
and Thanh, M.D., Global Existence for
Phase Transition
Problems via a Variational Scheme, J. Hyperbolic Differential
Equations 1, no. 4,
747--768 (2004).
- Rohde, C., Scalar conservation laws
with mixed local and nonlocal
diffusion-dispersion terms. SIAM J.
Math. Anal. 37 ,
no. 1, 103--129 (2005).
- Rohde, C. and Thanh,
M.D., Global existence for phase transition problems via a variational
scheme. J. Hyperbolic Differ. Equ. 1, no. 4, 747--768 (2004).
|
|
|