Logo
   Nonlinear Partial Differential Equations
    Theoretical and Numerical Analysis
  
DFG-Forschergruppe



Home

Job Offers
Events
People
Projects
History
Links


  Project B2: Minimal Orbits and Hamilton-Jacobi Equations 
 
We shall develop the numerical analysis of certain aspects of periodic positive-definite Lagrangian systems (e.g. of geodesic flows on the n-torus): globally action-minimising semi-orbits (geodesic rays) and weak KAM tori, that provide some insight in the behaviour of the Euler flow of the action functional. Adapting a standard approach of optimal control theory to this particular situation, we obtain periodic (in time and space) boundary value problems for certain Hamilton-Jacobi-Bellman (HJB) equations or alternatively hyperbolic systems of conservation laws. The numerical schemes we consider approximate solutions of these PDE problems in order to construct weak KAM tori and associated minimal semi-orbits. We shall analyse the schemes with respect to existence of discrete solutions, stability, convergence, error estimates.

 

  Project leader 
 
Prof. Dr. Dietmar Kröner
Institut für Angewandte Mathematik
Albert-Ludwigs-Universität
Hermann-Herder-Str. 10
D-79104 Freiburg im Breisgau
Germany
Tel. +49 761 203-5637
Fax +49 761 203-5632
dietmar@mathematik.uni-freiburg.de

 

Last update: 15-12-2006 11:10:11