Übungen zur Vorlesung "Lineare Algebra II" im Sommersemester 2003 bei Prof. V. Bangert

Blatt 7 26. Juni 2003

- 1. Sei $\mathcal{G} = (v_1, \dots, v_n)$ eine geordnete Basis von V und $\lambda \in K$, und sei $L \in \text{End}(V)$ definiert durch $L(v_i) = \lambda v_i + v_{i+1}$ für $1 \le i \le n-1$ und $L(v_n) = \lambda v_n$.
 - (a) Geben Sie $Mat_{\mathcal{G}}^{\mathcal{G}}(L)$ an.
 - (b) Berechnen Sie das charakteristische Polynom P_L von L und alle Eigenwerte und Eigenvektoren von L.
 - (c) Zeigen Sie, dass L, falls n > 1, nicht diagonalisierbar ist.
 - (d) Zeigen Sie: $(L \lambda \operatorname{id}_V)^n = 0 \ (\in \operatorname{End}(V)) \ \operatorname{und} \ (L \lambda \operatorname{id}_V)^k \neq 0 \ \text{für} \ 0 \leq k < n.$
- 2. Betrachten Sie auf dem Schiefkörper \mathbb{H} der Quaternionen (vgl. Anwesenheitsaufgaben Blatt 4) die Abbildung $f : \mathbb{H} \to \mathbb{H}$, $f(x) = x^2 + 1$.
 - (a) Bestimmen Sie alle Nullstellen von f. (Ergebnis: $f(x) = 0 \iff x = ix_2 + jx_3 + kx_4 \text{ mit } x_2, x_3, x_4 \in \mathbb{R} \text{ und } x_2^2 + x_3^2 + x_4^2 = 1$. Insbesondere hat f unendlich viele Nullstellen.)
 - (b) Zeigen Sie: Es gibt kein $y \in \mathbb{H}$, so dass für alle $x \in \mathbb{H}$ gilt $x^2 + 1 = (x + i)(x + y)$.
- 3. Sei dim $V = n < \infty$ und $L \in \text{End}(V)$. Zeigen Sie:
 - (a) Ist $p \in K[x]$ und ist $\lambda \in K$ ein Eigenwert von L, dann ist $p(\lambda)$ ein Eigenwert des Endomorphismus p(L).
 - (b) Ist L diagonalisierbar und ist P_L das charakteristische Polynom von L, dann gilt $P_L(L) = 0$.
- 4. Sei V der \mathbb{R} -Vektorraum der unendlich oft differenzierbaren, 2π -periodischen Funktionen $f: \mathbb{R} \to \mathbb{R}$, und $L \in \text{End}(V)$ sei definiert durch L(f) = f''.
 - (a) Zeigen Sie: Die Funktionen f_k , definiert durch $f_k(x) = \cos(kx)$, $k \in \mathbb{N}$, sind Eigenvektoren von L. Berechnen Sie die zugehörigen Eigenwerte $\lambda_k \in \mathbb{R}$.
 - (b) Bestimmen Sie die Eigenräume $E(\lambda_k)$ von L für alle $k \in \mathbb{N}$. Anleitung: Lineare Algebra I, Blatt 9, Aufgabe 5.
 - (c) Zeigen Sie, dass L selbstadjungiert bezüglich des L^2 -Skalarprodukts $\langle f, g \rangle_{L^2} = \int_0^{2\pi} f(x)g(x) dx$ auf V ist, d. h., dass für alle $f, g \in V$ gilt $\langle L(f), g \rangle_{L^2} = \langle f, L(g) \rangle_{L^2}$. Anleitung: partielle Integration.
 - (d) Hier können Sie voraussetzen (ohne Beweis), dass es kein $f \in V \setminus \{0\}$ gibt, so dass für alle $k \in \mathbb{N}$ gilt $\langle f, \cos(kx) \rangle_{L^2} = 0$ und $\langle f, \sin(kx) \rangle_{L^2} = 0$. Zeigen Sie, dass $\{\lambda_k \mid k \in \mathbb{N}\}$ die Menge aller Eigenwerte von L ist. Anleitung: Ist L selbstadjungiert und sind f und g Eigenvektoren von L zu verschiedenen Eigenwerten, so ist $\langle f, g \rangle_{L^2} = 0$ (Anwesenheitsaufgabe 2).

Abgabe: Donnerstag, 3. Juli in der Vorlesung Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt Internet: http://web.mathematik.uni-freiburg.de/mi/geometrie/la2/