Blatt 9 25. Juni 2013

Bitte geben Sie auf Ihren Lösungen Ihren Namen an.

- 1. (2 Punkte) Sei $c : \mathbb{R} \to S^m$ nach Bogenlänge parametrisierte Geodätische auf der Sphäre $S^m \subseteq \mathbb{R}^{m+1}$ vom Radius 1 mit der vom \mathbb{R}^{m+1} induzierten Metrik. Zeigen Sie: Die reellen Zahlen s und t sind genau dann konjugiert längs c, wenn $0 < |t s| \in \pi \mathbb{N}$.
- 2. Sei $c: I \to M$ Geodätische und $s, t \in I, \, s < t.$ Dann ist

$$\mathcal{J}_{s,t}^0 = \{ Y \mid Y \text{ Jacobifeld längs } c, Y(s) = 0, Y(t) = 0 \}$$

ein Untervektorraum von $\mathcal{V}_c|_{[s,t]}$. Ist dim $\mathcal{J}_{s,t}^0 > 0$, so sind s,t konjugiert längs c und dim $\mathcal{J}_{s,t}^0$ heißt dann die Vielfachheit des konjugierten Punktepaares s,t.

- (a) Berechnen Sie die Vielfachheiten der konjugierten Punktepaare von (nach Bogenlänge parametrisierten) Geodätischen auf der Standardsphäre S^m , vgl. Aufgabe 1.
- (b) Sei p = c(s), $v = \dot{c}(s)$. Zeigen Sie, dass dim $\mathcal{J}_{s,t}^0 = \dim(\ker(\exp_p)_{*(t-s)v}) \leq m-1$ gilt.
- 3. Sei $\alpha : [a, b] \times] \varepsilon, \varepsilon [\to M \text{ geodätische Variation, d.h. für alle } \tau \in] \varepsilon, \varepsilon [\text{ ist } c_{\tau}(t) := \alpha(t, \tau)$ Geodätische. Es gelte für alle $\tau \in] \varepsilon, \varepsilon [$:

$$c_{\tau}(a) = c_0(a), c_{\tau}(b) = c_a(b) \text{ und } \frac{\partial}{\partial \tau} \dot{c}_{\tau}(0) \neq 0.$$

Zeigen Sie: Für alle $\tau \in]-\varepsilon, \varepsilon[$ sind a und b konjugiert längs c und es gilt $L(c_{\tau})=L(c_{0}).$

4. Fokalpunkte (6 Punkte): Sei $(\overline{M}, \overline{g})$ vollständige Riemannsche Mannigfaltigkeit und $M \subseteq \overline{M}$ Untermannigfaltigkeit. Die normale Exponentialabbildung $\exp_{TM^{\perp}}: TM^{\perp} \to \overline{M}$ der Untermannigfaltigkeit M ist durch $\exp_{TM^{\perp}}:=\overline{\exp}|_{TM^{\perp}}$ definiert (d.h. ist $v \in TM_p^{\perp}$, so ist $\exp_{TM^{\perp}}(tv) = c_v(t)$ die Geodätische in \overline{M} , die zur Zeit t = 0 in $p \in M$ mit Tangentialvektor $\dot{c}(0) = v \in TM_p^{\perp}$ senkrecht zu M startet.)

Ein Punkt $q \in \overline{M}$ heißt Fokalpunkt von M, wenn es ein $v \in TM^{\perp}$ gibt, sodass $q = \exp_{TM^{\perp}}(v)$ und $(\exp_{TM^{\perp}})_{*v}$ singulär ist.

(a) Ist M Hyperfläche in $(\overline{M}, \overline{g})$ mit Einheitsnormalenvektorfeld N, so ist $\exp_{TM^{\perp}}(tN(p))$ für $t \neq 0$ Fokalpunkt von M, wenn es ein Jacobifeld $Y \neq 0$ längs $c(s) = \exp_{TM^{\perp}}(sN(p))$ gibt für das $Y(0) \in TM_p$, Y(t) = 0 und

$$Y'(0) = -S_p(Y(0)).$$

(b) Sei $(\overline{M}, \overline{g}) = \mathbb{E}^m$, also $\overline{\exp}_p(p, v) = p + v$, und $M \subseteq \mathbb{E}^m$ Hyperfläche mit Einheitsnormalenfeld $N \in \Gamma(TM^{\perp})$.

Zeigen Sie: Ist $p \in M$, so ist $\exp_{TM^{\perp}}(p, tN(p)) = p + tN(p)$ Fokalpunkt von M, wenn $\frac{1}{t}$ eine Hauptkrümmung (bzgl. N), d.h. Eigenwert der Weingartenabbildung (vgl. Anwesenheitsaufgabe), von M in p ist.

Abgabe: Montag, 2. Juli, vor Beginn der Vorlesung. Bitte werfen Sie Ihre Lösungen in den dafür vorgesehenen Briefkasten im Kellergeschoss der Eckerstr. 1

Anwesenheitsaufgaben

1. Sei $(\overline{M}, \langle \, , \, \rangle)$ Riemannsche Mannigfaltigkeit und $M \subseteq \overline{M}$ eine Hyperfläche mit lokalem Einheitsnormalenvektorfeld N um $p \in M$. Sei weiterhin $\gamma :]-\varepsilon, \varepsilon[\to M$ glatte Kurve mit $\gamma(0) = p$ und $\alpha(t,\tau) = \overline{\exp}_{\gamma(\tau)}(tN(\gamma(\tau)))$ geodätische Variation.

Zeigen Sie für das Jacobifeld
$$Y(t) := \frac{\partial \alpha}{\partial \tau}|_{(t,0)}$$
, dass $Y(0) \in TM_p$ und $Y'(0) \in TM_p$.

Die 2. Fundamentalform h von M in \overline{M} definiert auf TM_p (in Abhängigkeit von der Wahl des Normalenfeldes) eine lineare Abbildung $S_p:TM_p\to TM_p$ durch die Bedingung $\langle S_p(v),w\rangle=\langle h_p(v,w),N(p)\rangle$. Diese Abbildung heißt Weingartenabbildung bzgl. N(p). Zeigen Sie, dass $Y'(0)=-S_p(Y(0))$ gilt.