4. Übungsblatt zur Vorlesung "Lineare Algebra II" im Sommersemester 2013 bei Prof. Dr. S. Goette

Bitte schreiben Sie Ihren Namen sowie die Nummer Ihrer Übungsgruppe auf Ihre Lösung. Abgabe: Montag, den 13.05.2013 bis 11:00 Uhr in den Briefkästen, Eckerstr. 1, UG.

Aufgabe 1: Es sei V ein endlichdimensionaler k-Vektorraum und F, $G \in \operatorname{End}_k V$, und F sei diagonalisierbar. Zeigen Sie, dass $F \circ G = G \circ F$ genau dann gilt, wenn alle Eigenräume

$$V_{\lambda} = \{ v \in V \mid F(v) = v.\lambda \}$$

invariant unter G sind, das heißt, im $G|_{V_{\lambda}} \subset V_{\lambda}$.

Aufgabe 2: Es sei R ein Integritätsbereich.

- (a) Zeigen Sie, dass $R[X]^{\times} = R^{\times}$.
- (b) Es sei $0 \neq r \in R \setminus R^{\times}$. Zeigen Sie, dass es kein $P \in R[X]$ gibt, so dass (P) = (r, X).

Aufgabe 3: Es sei V ein endlichdimensionaler \Bbbk -Vektorraum und $F \in \operatorname{End}_{\Bbbk} V$. Wir betrachten die Abbildung $\operatorname{ev}(\cdot, F) \colon \Bbbk[X] \to \operatorname{End}_{\Bbbk} V$ mit $\operatorname{ev}(P, F) = P(F)$ aus Beispiel 5.28. Wir definieren eine Multiplikation von $\Bbbk[X]$ auf V durch

$$P \cdot v = P(F)(v).$$

- (a) Zeigen Sie, dass V dadurch zu einem unitären $\Bbbk[X]$ -Modul wird. Hinweis: Verwenden Sie nur die Vektorraumaxiome für V, die Linearität von $P(F): V \to V$, und dass $\operatorname{ev}(\cdot, F)$ ein unitärer Ringhomomorphismus ist.
- (b) Sei $G \in \operatorname{End}_{\Bbbk} W$, und $\Bbbk[X]$ wirke auf W durch $P \cdot w = P(G)(w)$. Dann ist eine Abbildung $\Phi \colon V \to W$ genau dann ein $\Bbbk[X]$ -Modulhomomorphismus, wenn Φ ein \Bbbk -Vektorraumhomomorphismus mit $\Phi \circ F = G \circ \Phi$ ist.

Aufgabe 4: Sei $V = \{P \in \mathbb{R}[X] \mid \deg P \leq 3\}$. Sei $F = (X+1) \cdot \frac{d}{dX} \in \operatorname{End} V$, das heißt $F(aX^3 + bx^2 + cX + d) = (X+1) \cdot (3aX^2 + 2bX + c)$.

- (a) Stellen Sie F bezüglich der Basis $B=(1,X,X^2,X^3)$ als Matrix dar.
- (b) Berechnen Sie χ_F und bestimmen Sie die Nullstellen.
- (c) Geben Sie eine Basis aus Eigenvektoren an.