Prof. V. Bangert 19. 4. 2016

Bitte schreiben Sie Ihren Namen auf Ihre Lösung. Abgabe am 26. 4. 2016 vor Beginn der Vorlesung.

Aufgabe 1.

Seien C_1 und C_2 abgeschlossene Teilmengen eines topologischen Raums X. Zeigen Sie, dass $C_1 \cup C_2$ abgeschlossen in X ist. Finden Sie ein Beispiel eines topologischen Raums X und einer Folge $(C_n)_{n\in\mathbb{N}}$ von abgeschlossenen Teilmengen von X, so dass $\bigcup_{n\in\mathbb{N}} C_n$ nicht abgesclossen in X ist.

Aufgabe 2.

Sei (X, d) metrischer Raum. Zeigen Sie

a)

$$d': X \times X \to \mathbb{R} \ , \ d'(x,y) := \frac{d(x,y)}{1+d(x,y)}$$

ist eine Distanzfunktion auf X und es gilt d'(x,y) < 1 für alle $x,y \in X$.

- b) $\mathcal{O}(d) = \mathcal{O}(d')$
- c) Ist $X = \mathbb{R}^n$ und d die durch die euklidische Norm induzierte Metrik auf \mathbb{R}^n , so sind d und d' nicht äquivalent.

Aufgabe 3.

Auf dem \mathbb{R} -Vektorraum $V = C^1([0,1],\mathbb{R})$ betrachten wir die C^0 -Norm $\|\cdot\|_{C^0}$,

$$||f||_{C^0} := \max_{x \in [0,1]} |f(x)|$$

und die C^1 -Norm $\|\cdot\|_{C^1}$,

$$||f||_{C^1} := ||f||_{C^0} + ||f'||_{C^0}.$$

Zeigen Sie, dass die von $\|\cdot\|_{C^1}$ auf V induzierte Topologie echt feiner ist als die von $\|\cdot\|_{C^0}$ induzierte Topologie (d.h. zeigen Sie: jede bzgl. $\|\cdot\|_{C^0}$ offene Menge ist offen bzgl. $\|\cdot\|_{C^1}$, aber $\{f \in V \mid \|f\|_{C^1} < 1\}$ ist nicht offen bzgl. $\|\cdot\|_{C^0}$).

Aufgabe 4

Geben Sie für folgende Teilmengen A des \mathbb{R}^2 (mit der üblichen Topologie) die Mengen \mathring{A} , \overline{A} und ∂A an.

a)
$$A = \mathbb{Q}^2$$

b)
$$A = ([0,1] \times (0,2)) \cup ((1,2) \times \{1\})$$

Bei a) wird eine Begründung erwartet, bei b) genügt die Angabe der Ergebnisse.

Bei a) können Sie o. Bew. benutzen, dass es in jedem Interval $\emptyset \neq (a,b) \subset \mathbb{R}$ sowohl rationale als auch irrationale Zahlen gibt.