Übungsblatt 5 zur Vorlesung "Topologie" im SS 16

Prof. V. Bangert 24. 5. 2016

Schreiben Sie Ihren Namen auf Ihre Lösung. Abgabe am 31. 5. vor Beginn der Vorlesung.

Aufgabe 1.

Sei X topologischer Raum und $A \subset X$, $B \subset X$ seien zusammenhängend.

Zeigen Sie: Ist $A \cap B \neq \emptyset$, so ist $A \cup B$ zusammenhängend.

(Sie dürfen dabei nicht Satz (4.9)(a) benutzen, denn der Beweis von Satz (4.9)(a) beruht auf dieser Aussage.)

Aufgabe 2.

Zu einem topologischen Raum X bezeichne $\mathcal{Z}(X)$ die Menge der Zusammenhangskomponenten von X. Zeigen Sie:

- a) Sei $f: X \to Y$ stetig. Ist $A \in \mathcal{Z}(X)$, so existiert genau ein $\tilde{A} \in \mathcal{Z}(Y)$ mit $f(A) \subset \tilde{A}$. Das definiert eine Abbildung $\mathcal{Z}(f): \mathcal{Z}(X) \to \mathcal{Z}(Y)$.
- b) Sind $f: X \to Y$, $g: Y \to Z$ stetig, so gilt $\mathcal{Z}(g \circ f) = \mathcal{Z}(g) \circ \mathcal{Z}(f)$.
- c) Ist $h: X \to Y$ Homöomorphismus, so ist $\mathcal{Z}(h): \mathcal{Z}(X) \to \mathcal{Z}(Y)$ Bijektion.

Aufgabe 3.

- a) Seien X,Y topologische Räume, $h:X\to Y$ Homöomorphismus und sei $x\in X$. Zeigen Sie: $\tilde{h}:X\backslash\{x\}\to Y\backslash\{h(x)\}$, definiert durch $\tilde{h}(z):=h(z)$ für alle $z\in X\backslash\{x\}$, ist ein Homöomorphismus.
- b) Zeigen Sie: Das Intervall $[0,1] \subset \mathbb{R}$ und die Kreislinie

$$S^1 := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

sind nicht homöomorph.

Hinweis: Sie können Aufgabe 2, c) benützen.

Aufgabe 4.

Es sei X der durch

$$X = \left\{ r(\cos\varphi, \sin\varphi) \; \middle| \; 0 \le r \le 1, \; \varphi \in \{0\} \cup \left\{ \frac{1}{n} \; \middle| \; n \in \mathbb{N} \right\} \right\}$$

gegebene Unterraum des \mathbb{R}^2 .

- a) Skizzieren Sie X.
- b) Zeigen Sie, dass X wegzusammenhängend ist.
- c) Zeigen Sie, dass X nicht lokal zusammenhängend ist.