Bonusblatt zur Vorlesung "Topologie" im SS 16

Prof. V. Bangert

19. 7. 2016

Schreiben Sie Ihren Namen auf Ihre Lösung.

Abgabe am 26. 7. vor 12 Uhr.

Aufgabe 1.

Zeigen Sie: Das Gleichungssystem

$$x(y^5 + 3) + \sin((1 - x^2)\ln(2 + y)) = 1$$
$$y^3 \cos x + (1 - y^2)e^{xy} = 0$$

besitzt eine Lösung $(x_0, y_0) \in (-1, 1) \times (-1, 1)$.

Aufgabe 2.

Sei $\gamma:[0,1]\to X$ Weg von $\gamma(0)=:x_0$ nach $\gamma(1)=:x_1$ und $J_\gamma:\pi_1(X,x_0)\to\pi_1(X,x_1)$ der im Satz (9.9) behandelte Isomorphismus, $J_\gamma([\sigma]):=[(\overline{\gamma}*\sigma)*\gamma]$.

Zeigen Sie: J_{γ} ist genau dann unabhängig von der Wahl von γ , wenn $\pi_1(X, x_0)$ abelsch ist. (" J_{γ} ist unabhängig von der Wahl von γ " bedeutet "Ist $\tilde{\gamma}: [0, 1] \to X$ ein weiterer Weg von x_0 nach x_1 , so gilt $J_{\tilde{\gamma}} = J_{\gamma}$ ".)

Aufgabe 3.

Sei $S^1=\{z\in\mathbb{C}\ |\ |z|=1\}$ und $\gamma:S^1\to\mathbb{C}\backslash\{0\}$ stetig.

Zeigen Sie: Gilt für alle $z \in S^1$: $\gamma(-z) = -\gamma(z)$, so ist die Umlaufzahl $n(\gamma,0)$ von γ um $0 \in \mathbb{C}$ ungerade.

Anleitung: Sei $p: \mathbb{R} \to S^1$ die Überlagerung $p(t) := e^{2\pi i t}$ und $\tilde{f}: \mathbb{R} \to \mathbb{R}$ eine Hochhebug von $f:=\frac{\gamma \circ p}{|\gamma \circ p|}: \mathbb{R} \to S^1$. Zeigen Sie, dass dann sowohl $t \mapsto \tilde{f}(t+\frac{1}{2})$ als auch $t \mapsto \tilde{f}(t)+\frac{1}{2}$ Hochhebungen von $t \mapsto f(t+\frac{1}{2})$ (und sich deshalb nur um ein $k \in \mathbb{Z}$ unterscheiden).

Aufgabe 4.

Zeigen Sie, dass das Gleichungssystem

$$x\cos(y) = x^{2} + y^{2} - 1$$
$$y\cos(x) = \sin(2\pi(x^{2} + y^{2}))$$

eine Lösung $(x_0, y_0) \in \mathbb{R}^2$ mit $x_0^2 + y_0^2 < 1$ besitzt.

Anleitung: Zeigen Sie mit Aufgabe 3), dass $\gamma: S^1 \to \mathbb{R}^2 \setminus \{(0,0)\}, \gamma(x,y) := (x\cos(y), y\cos(x)),$ Umlaufzahl $\neq 0$ um $(0,0) \in \mathbb{R}^2$ hat.

Lösung 1.

Sei

$$f(x,y) = x(y^5 + 3) + \sin((1 - x^2)\ln(2 + y)) - 1$$
, $g(x,y) = y^3 \cos x + (1 - y^2)e^{xy}$.

Dann gilt für alle $x, y \in [-1, 1]$:

$$f(1,y) = y^5 + 2 > 0$$
, $f(-1,y) = -y^5 - 4 < 0$
 $g(x,1) = \cos x > 0$, $g(x,-1) = -\cos x < 0$.

Dann impliziert Folgerung (10.19): Es existiert $(x_0, y_0) \in (-1, 1) \times (-1, 1)$ mit $f(x_0, y_0) = g(x_0, y_0) = 0$. Dieses (x_0, y_0) löst das Gleichungssystem.

Lösung 2.

Sei $\pi_1(X, x_0)$ abelsch, $[\sigma] \in \pi_1(X, x_0)$ und γ_1, γ_2 Wege von x_0 nach x_1 . Dann gilt $J_{\gamma_1}([\sigma]) = [(\overline{\gamma}_1 * \sigma) * \gamma_1] = [(\overline{\gamma}_1 * (\sigma * (\gamma_2 * \overline{\gamma}_2))) * \gamma_1] = [((\overline{\gamma}_1 * \sigma) * \gamma_2) * (\overline{\gamma}_2 * \gamma_1)] \in \pi_1(X, x_1)$. Da $\pi_1(X, x_1)$ auch abelsch ist, folgt $J_{\gamma_1}([\sigma]) = [(\overline{\gamma}_1 * \sigma) * \gamma_2] \cdot [\overline{\gamma}_2 * \gamma_1] = [\overline{\gamma}_2 * \gamma_1] \cdot [(\overline{\gamma}_1 * \sigma) * \gamma_2] = [(\overline{\gamma}_2 * ((\gamma_1 * \overline{\gamma}_1) * \sigma)) * \gamma_2] = [(\overline{\gamma}_2 * \sigma) * \gamma_2] = J_{\gamma_2}([\sigma])$. Ist $\pi_1(X, x_0)$ nicht abelsch, so existieren $[\sigma], [\tau] \in \pi_1(X, x_0)$ mit $[\sigma]^{-1} \cdot [\tau] \cdot [\sigma] \neq [\tau]$. Für γ , ein Weg von x_0 nach x_1 , ist auch $\gamma * \sigma$ ein Weg von x_0 nach x_1 . Es gilt dann $J_{\gamma}([\tau]) \neq J_{\gamma}([(\overline{\sigma} * (\tau * \sigma))])$ und $[(\overline{\gamma} * (\overline{\sigma} * (\tau * \sigma))) * \gamma] = [((\overline{\gamma} * \overline{\sigma}) * \tau * (\sigma * \gamma)] = J_{\gamma * \sigma}([\tau])$, also $J_{\gamma}([\tau]) \neq J_{\gamma * \sigma}([\tau])$.

Lösung 3.

Es gilt $\gamma(-z) = -\gamma(z)$, also $\gamma(-p(t)) = \gamma(-e^{2\pi it}) = \gamma(e^{2\pi i(t+1/2)}) = -\gamma(p(t))$ und damit $f(t+1/2) = -f(t) \in S^1$. Für \tilde{f} Hochhebung von f gilt

$$e^{2\pi i \tilde{f}(t+1/2)} = p \circ \tilde{f}(t+1/2) = f(t+1/2) = -f(t) = -e^{2\pi i \tilde{f}(t)} = e^{2\pi i (\tilde{f}(t)+1/2)},$$

also gibt es ein $k \in \mathbb{Z}$ mit $\tilde{f}(t+1/2) - \tilde{f}(t) = 1/2 + k$ für alle $t \in \mathbb{R}$. Dann ist $\tilde{f}(1) - \tilde{f}(0) = \tilde{f}(1/2+1/2) - \tilde{f}(1/2) + \tilde{f}(1/2) - \tilde{f}(0) = 1/2 + k + 1/2 + k = 1 + 2k$ ungerade. Es ist klar, dass f homotop zu $\gamma \circ p$ in $\mathbb{C} \setminus \{0\}$ ist, und damit gilt $n(\gamma, 0) \notin 2\mathbb{Z}$.

Lösung 4.

Sei $f: D^2 \to \mathbb{R}^2$, $f(x,y) := (x\cos(y) - x^2 - y^2 + 1, y\cos(x) - \sin(2\pi(x^2 + y^2)))$, offensichtlich stetig, und es gilt $f|_{S^1}(x,y) = (x\cos(y), y\cos(x))$. Es gilt

$$f|_{S^1}(-x, -y) = (-x\cos(-y), -y\cos(-x)) = -(x\cos(y), y\cos(x)) = -f|_{S^1}(x, y).$$

Da $\cos|_{[-1,1]} > 0$, folgt $x \cos(y) \neq 0$ falls $x \neq 0$, $y \in [-1,1]$ und $y \cos(x) \neq 0$ falls $y \neq 0$, $x \in [-1,1]$, also $f|_{S^1}(x,y) \neq (0,0) \in \mathbb{R}^2$. Mit dem Isomorphism $(\mathbb{C},+) \simeq (\mathbb{R}^2,+)$ gilt nach Aufgabe 3, dass $n(f|_{S^1},0) \neq 0$. Aus dem Satz (10.12) folgt die Existenz von einem $(x_0,y_0) \in D^2$ mit $f(x_0,y_0) = 0$. Dieser Punkt löst das Gleichungssystem.