PROBEKlausur: "Funktionalanalysis" SS 2021

Tipp:	Schreiber	Schreiben Sie die Probeklausur unter möglichst realitätsnahen Bedingungen.			
Datum und Uhrzeit:	- Uhr				
Prüfungsdauer:	2 Stunde	n			
Raum: HS 1010, KG I (Corona-Bedingungen)					
Prüfer:	Prof. Dr. Sebastian Goette				
Nachname: Vorname:					
Matrikelnummer:					
Fach:					
Studiengang:	\square Bachelor	\square Master	\Box Lehramt	\square sonstiges	
Unterschrift:					_
\ nmorkungon:					

- Zusätzliche Blätter sind mit Namen und Matrikelnummer zu versehen.
- Für jede Aufgabe ist eine neue Seite/Bogen zu beginnen.
- Mobiltelefone müssen ausgeschaltet und am Eingang abgegeben werden.
- Elektronische Hilfsmittel (Taschenrechner,...) jeglicher Art sind **nicht** zugelassen.
- Erlaubte Hilfsmittel: ein doppelseitig handschriftlich beschriebenes DIN A4 Blatt
- Alle Ergebnisse sind zu begründen bzw. herzuleiten. Aussagen aus der Aufgabenstellung vorangegangener Aufgabeteile dürfen Sie im Rest der Aufgabe verwenden.

	Max. Anzahl Punkte	Erreichte Punkte	Bemerkung
Aufgabe 1	4		
Aufgabe 2	4		
Aufgabe 3	4		
Aufgabe 4	4		
Aufgabe 5	4		
Summe:	20		

Note:	
Klausur eingesehen am:	
Unterschrift des Prüfers:	

Aufgabe 1: (4 Punkte)

Beantworten Sie die folgenden Fragen mit Ja oder Nein <u>und</u> geben Sie nur eine knappe Begründung, z.B. ein Gegenbeispiel (ein oder zwei Sätze; kein vollständiges Argument!). Wenn Sie einen Satz aus der Vorlesung nutzen, geben Sie die entsprechende Aussage jedoch inklusive Annahmen und Behauptung komplett an.

1. Es sei $A \colon D(A) \subseteq X \to Y$ unbeschränkt und abgeschlossen mit N(A) = 0 und R(A) = Y. Dann ist A^{-1} beschränkt.

2. Es sei X ein Banachraum, $x \in X$ und $M \subseteq X$ eine Teilmenge. Falls alle stetigen Funktionale, die auf M verschwinden, auch auf x verschwinden, dann gilt $x \in \overline{\operatorname{span} M}$

3. Es sei $1 \leq p < q < \infty$ und $\Omega \subseteq \mathbb{R}^n$ messbar, dann gilt $L^q(\Omega) \subseteq L^p(\Omega)$.

4. Es sei X ein Banachraum, $A \in \mathcal{L}(X)$ und $\lambda \in \operatorname{spec}(A)$. Dann gilt $|\lambda| \leq ||A||_{\operatorname{op}}$.

 Aufgabe 2: (4 Punkte=1+1+2 Punkte) Es sei $A\colon C^0([0,1])\to C^1([0,1])$ definiert durch

$$Af(x) = \int_0^x f d\lambda.$$

- 1. Zeigen Sie, dass A stetig bezüglich der Supremumsnorm auf $C^0([0,1])$ und der C^1 -Norm auf $C^1([0,1])$ ist.
- 2. Zeigen Sie, dass A, aufgefasst als eine Abbildung von $C^0([0,1])$ nach $C^0([0,1])$, ein kompakter Operator ist.
- 3. Zeigen Sie, dass das Bild des abgeschlossenen Einheitsballes nicht abgeschlossen ist.

Aufgabe 3: (4 Punkte)

Es sei H ein separabler Hilbertraum mit zwei Hilbertbasen $\{e_i\}_{i\in\mathbb{N}}$ und $\{f_{n,m}\}_{(n,m)\in\mathbb{N}\times\mathbb{N}}$. Es bezeichne $D(A) = \operatorname{span}\{f_{n,m}\}_{(n,m)\in\mathbb{N}\times\mathbb{N}}$ das Erzeugnis der Vektoren im SInne der linearen Algebra und $A \colon D(A) \subseteq H \to H$ den Operator, der gegeben ist durch

$$Af_{n,m} = me_n$$
.

- 1. Zeigen Sie, dass A dicht definiert und nicht beschränkt ist.
- 2. Es sei $A^* : D(A^*) \subset H' \to H'$ der zu A adjungierte Operator. Zeigen Sie, dass $D(A^*) = \{0\}$.

Aufgabe 4: (4 Punkte) Es sei X ein reflexiver Banachraum, Y ein Banachraum und $A \in \mathcal{L}(X,Y)$. Zeigen Sie, dass das Bild der abgeschlossenen Einheitskugel $A(\overline{B_X})$ (stark) abgeschlossen ist.

Aufgabe 5: (4 Punkte)

Es sei $\phi \colon [0,1] \to \mathbb{R}$ gegeben durch

$$\phi(x) = \begin{cases} 2x, & \text{für } x \in [0, \frac{1}{2}) \\ 1, & \text{für } x \in [\frac{1}{2}, 1] \end{cases}.$$

1. Zeigen Sie, dass

$$M_{\phi} \colon L^{2}([0,1]) \ni f \mapsto \phi f \in L^{2}([0,1])$$

eine stetige lineare Abbildung ist.

2. Berechnen Sie das Punktspektrum, das kontinuierliche und das residuelle Spektrum von M_{ϕ} .