Übungen zur Vorlesung "Lineare Algebra I" im Wintersemester 2002/03 bei Prof. V. Bangert

Blatt 5 14. November 2002

1. Sei I das homogene lineare Gleichungssystem

$$5x_1 + 10x_2 + 20x_3 + 2x_4 = 0$$

 $x_1 + x_2 + x_3 + x_4 = 0$

und $L_I \subseteq \mathbb{R}^4$ der Lösungsraum von I.

Finden Sie ein Erzeugendensystem von L_I , das aus 2 Elementen besteht.

2. Sei V ein K-Vektorraum und seien $U_1 \subseteq V$, $U_2 \subseteq V$ Unterräume von V. Zeigen Sie:

$$U_1 \cup U_2$$
 ist Unterraum von $V \iff U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$

Anleitung: Für die Richtung " \Rightarrow " können Sie einen indirekten Beweis führen. Nehmen Sie an, $U_1 \cup U_2$ sei ein Unterraum, aber $U_1 \setminus U_2 \neq \emptyset$ und $U_2 \setminus U_1 \neq \emptyset$. Betrachten Sie $v_1 \in U_1 \setminus U_2$ und $v_2 \in U_2 \setminus U_1$ und untersuchen Sie, in welchen der Mengen $U_1, U_2, U_1 \cup U_2$ das Element $v_1 + v_2$ liegt.

- 3. Sei U ein Unterraum des \mathbb{R}^2 mit $\{(0,0)\} \neq U \neq \mathbb{R}^2$. Zeigen Sie: Es existiert ein $v \in \mathbb{R}^2 \setminus \{(0,0)\}$, so dass $U = \{rv \mid r \in \mathbb{R}\}$.
- 4. In der Vorlesung wurde auf der Menge $V = \{f \mid f : \mathbb{R} \to \mathbb{R}\}$ die Struktur eines \mathbb{R} Vektorraums definiert. Ein $f \in V$ heißt Polynomfunktion, falls es ein $n \in \mathbb{N}$ und reelle Zahlen a_0, \ldots, a_n gibt, so dass für alle $x \in \mathbb{R}$ gilt:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

(a) Zeigen Sie: Gilt für alle $x \in \mathbb{R}$

$$a_0 + a_1 x + \dots + a_n x^n = b_0 + b_1 x + \dots + b_n x^n$$

so folgt $a_0 = b_0$, $a_1 = b_1$, ..., $a_n = b_n$.

Hinweis: Sie können Ihre Schulkenntnisse über das Ableiten von Polynomfunktionen benutzen.

- (b) Zeigen Sie: Die Menge P der Polynomfunktionen ist ein Unterraum von V. Die Menge $\{x^n \mid n \in \mathbb{N}\}$ ist ein Erzeugendensystem von P.
- (c) Ist $f \in P$, $f(x) = a_0 + a_1x + \cdots + a_nx^n$ und $a_n \neq 0$, so heißt n der Grad von f, $n = \operatorname{grad}(f)$. (Beachten Sie, dass der Grad für jede Polynomfunktion definiert ist, außer für die Nullfunktion f(x) = 0.)

Für $n \in \mathbb{N}$ sei $P_n := \{ f \in P \mid f = 0 \text{ oder } \operatorname{grad}(f) \leq n \}.$

Zeigen Sie: P_n ist ein Unterraum von P. Finden Sie ein endliches Erzeugendensystem für P_n .

Abgabe: Donnerstag, 21. November in der Vorlesung

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt

Internet: http://web.mathematik.uni-freiburg.de/mi/geometrie/la1/