Übungen zur Vorlesung "Lineare Algebra I" im Wintersemester 2002/03 bei Prof. V. Bangert

Blatt 14 30. Januar 2003

1. (a) Berechnen Sie

$$\begin{vmatrix}
1 & 0 & 2 & 3 \\
2 & 1 & -1 & 1 \\
3 & 2 & 0 & 1 \\
-1 & 0 & 1 & 1
\end{vmatrix}$$

- (b) Berechnen Sie das Volumen $\operatorname{vol}_{D_0}(P)$ des Parallelotops $P = P(v_1, v_2, v_3, v_4) \subseteq \mathbb{R}^4$ mit $v_1 = (2, 1, 1, -1), v_2 = (1, 0, 1, -1), v_3 = (0, 0, 1, 2), v_4 = (1, 2, 3, 4).$
- 2. Sei $L \in \operatorname{End} \mathbb{R}^2$ der Endomorphismus von \mathbb{R}^2 mit der Matrix $\operatorname{Mat}(L) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.
 - (a) Bestimmen Sie die Eigenwerte von L und alle zugehörigen Eigenvektoren.
 - (b) Geben Sie eine geordnete Basis \mathcal{G} von \mathbb{R}^2 an, die aus Eigenvektoren von L besteht, und die Matrix $\operatorname{Mat}_{\mathcal{G}}^{\mathcal{G}}(L)$ von L bezüglich \mathcal{G} .
- 3. Betrachten Sie den \mathbb{R} -Vektorraum P_n der Polynome vom Grad $\leq n$ und den Endomorphismus $L \colon P_n \to P_n$, gegeben durch L(p)(x) = p(x-1).

Berechnen Sie det L.

Hinweis: Zeigen Sie, dass die Matrix von L bezüglich der Standardbasis $(1, x, ..., x^n)$ eine obere Dreiecksmatrix ist, und verwenden Sie Aufgabe 4 von Blatt 11.

- 4. (a) Für $A \in \mathbb{R}^{n \times n}$ gelte $AA^T = E_n$. Zeigen Sie: $|\det A| = 1$.
 - (b) Eine Matrix $A \in K^{n \times n}$ heißt schiefsymmetrisch, wenn $A^T = -A$. Sei K ein Körper mit $1+1 \neq 0$, sei n ungerade und sei $A \in K^{n \times n}$ schiefsymmetrisch. Zeigen Sie: det A=0.
 - (c) Der Matrix $A = (a_{ij})_{1 \le i,j \le n} \in K^{n \times n}$ werde die Matrix $\tilde{A} = (\tilde{a}_{ij})_{1 \le i,j \le n} \in K^{n \times n}$ mit $\tilde{a}_{ij} := (-1)^{i+j} a_{ij}$ zugeordnet.

Zeigen Sie: $\det \tilde{A} = \det A$.

Abgabe: Donnerstag, 6. Februar in der Vorlesung

Bitte schreiben Sie Ihren Namen und die Nummer Ihrer Übungsgruppe auf Ihr Blatt

Internet: http://web.mathematik.uni-freiburg.de/mi/geometrie/la1/