Übungen zur Vorlesung "Riemannsche Geometrie und Variationsrechnung"

im Wintersemester 2009/10 bei Prof. V. Bangert

Blatt 13 02. 02. 2010

Bitte schreiben Sie Ihren Namen auf Ihr Blatt.

Sei (B^2, g^{hyp}) das Poincarésche Kreisscheibenmodell des hyperbolischen Raums. Die Gruppe Iso⁺ (B^2, g^{hyp}) der orientierungstreuen Isometrien auf (B^2, g^{hyp}) ist gegeben durch

$$\operatorname{Iso}^{+}(B^{2}, g^{\operatorname{hyp}}) = \left\{ z \mapsto e^{i\Phi} \frac{z+b}{\overline{b}z+1} \middle| \Phi \in \mathbb{R}, \quad b \in B^{2} \right\}.$$

- 1. Eine Abbildung $A \in \mathrm{Iso}^+(B^2, g^{\mathrm{hyp}}) \setminus \{0\}$ heißt
 - elliptisch, falls A genau einen Fixpunkt $z_0 \in B^2$ besitzt,
 - parabolisch, falls A genau einen Fixpunkt $z_{\infty} \in S^1 := \partial B^2$ besitzt und
 - hyperbolisch, falls A genau zwei Fixpunkte $z_{-} \neq z_{+} \in S^{1}$ besitzt.

Zeigen Sie: A ist entweder elliptisch oder parabolisch oder hyperbolisch.

2. Sei $A \in \text{Iso}^+(B^2, g^{\text{hyp}})$ hyperbolisch und z_-, z_+ wie in Aufgabe 1. Sei $c : \mathbb{R} \to B^2$ eine g^{hyp} - Geodätische mit $|\dot{c}| = 1$ und $\lim_{t \to \pm \infty} c(t) = z_{\pm}$ (c ist dann bis auf Translation des Parameters eindeutig).

Zeigen Sie: Es existiert ein L = L(A), so dass $A \circ c(t) = c(t + L)$ für alle $t \in \mathbb{R}$.

Die Gruppe ($\{A \in \text{Iso}^+(B^2, g^{\text{hyp}}) | A(z_{\pm}) = z_{\pm}\}, \circ$) wird duch $A \mapsto L(A)$ isomorph auf ($\mathbb{R}, +$) abgebildet.

3. Sei $\Gamma \subseteq \text{Iso}^+(B^2, g^{\text{hyp}})$ eine Untergruppe, so dass der Quotient $M = B^2/\Gamma$ eine kompakte Fläche ist.

Zeigen Sie:

- (a) Alle Elemente aus Γ sind hyperbolisch.
- (b) Sind $A, B \in \Gamma$ und z_-^A, z_+^A bzw. z_-^B, z_+^B die zugehörigen Fixpunkte, so gilt entweder $\{z_-^A, z_+^A\} = \{z_-^B, z_+^B\}$ oder $\{z_-^A, z_+^A\} \cap \{z_-^B, z_+^B\} = \emptyset$

Abgabe: Dienstag, 09. 02. vor der Vorlesung