Übungen zur Vorlesung "Differentialgeometrie" im WS 2012/2013 bei Prof. V. Bangert

Blatt 7 3. Dezember 2012

Bitte geben Sie auf Ihren Lösungen Ihren Namen und Ihre Übungsgruppe an.

- 1. Orientierungsüberlagerung. Sei $m \geq 1$ und M eine zusammenhängende m-dimensionale differenzierbare Mannigfaltigkeit. Betrachten Sie $\overline{M} := \{(p, \sigma) \mid p \in M, \ \sigma \in \mathscr{O}(TM_p)\}$ und die Projektion $\pi \colon \overline{M} \to M$ mit $\pi(p, \sigma) := p$. Zeigen Sie:
 - (a) Es existiert genau eine Topologie und differenzierbare Struktur auf \overline{M} , so dass für jede Karte φ von M die Menge \overline{U}^{φ} offen und die Abbildung $\pi|\overline{U}^{\varphi}$ ein Diffeomorphismus ist, wobei

$$\overline{U}^{\varphi} := \left\{ (p, \sigma) \mid p \in U^{\varphi}, \ \sigma = \left[\left(\partial_1^{\phi}|_p, \dots, \partial_m^{\phi}|_p \right) \right] \right\} \subseteq \overline{M}.$$

- (b) Die Abbildung $F \colon \overline{M} \to \overline{M}$ mit $(p, \sigma) \mapsto (\underline{p}, \overline{\sigma})$, wobei $\overline{\sigma}$ die zu σ entgegengesetzte Orientierung ist, ist ein Diffeomorphismus. \overline{M} ist orientierbar und M ist diffeomorph zu $\overline{M}/\{F, \mathrm{id}_{\overline{M}}\}$.
- (c) M ist genau dann nicht orientierbar, wenn \overline{M} zusammenhängend ist.
- 2. Die Funktionen F und $G: \mathbb{R}^3 \to \mathbb{R}$ seien definiert durch $F(x,y,z) := (x^2 + y^2 4)^2 + z^2$ und $G(x,y,z) := (4x^2(1-x^2)-y^2)^2 + z^2$.
 - (a) Zeigen Sie, dass $F^{-1}(1)$ und $G^{-1}(\frac{1}{4})$ Untermannigfaltigkeiten des \mathbb{R}^3 sind.
 - (b) Skizzieren Sie diese Untermannigfaltigkeiten. Anleitung: Betrachten Sie zunächst $F^{-1}(0)$ und $G^{-1}(0)$.

Zeigen Sie für i = 1, 2.

- (c) M_i wird durch $-id_{\mathbb{R}^3}$ auf sich abgebildet.
- (d) $\Gamma := \{ id_{M_i}, (-id_{\mathbb{R}^3}) | M_i \}$ operiert frei und eigentlich diskontinuierlich auf M_i .
- (e) M_i/Γ ist nicht orientierbar. Hinweis: Nach Aufgabe 3b) ist $M_{1/2}$ orientierbar.
- 3. Sei $M \subseteq \mathbb{R}^n$ eine Untermannigfaltigkeit. Eine C^{∞} -Abbildung $V: M \to T\mathbb{R}^n$ mit der Eigenschaft $\pi \circ V = \mathrm{id}_M$, heißt normales Vektorfeld auf M, falls für jeden Punkt $p \in M$ gilt: $V(p) \in (TM_p)^{\perp} := \{(p,v) \in T\mathbb{R}_p^n \mid \forall \ (p,w) \in TM_p : \ \langle v,w \rangle = 0\}.$

Sei nun M Urbild eines regulären Wertes, d.h. es existiere eine glatte Abbildung $f: \mathbb{R}^n \to \mathbb{R}^k$ und ein regulärer Wert $y \in \mathbb{R}^k$ von f, so dass $M = f^{-1}(y)$.

Zeigen Sie:

(a) Es existieren k normale Vektorfelder V_1, \ldots, V_k auf M, so dass an jedem Punkt $p \in M$ die Vektoren $V_1(p), \ldots, V_k(p)$ das orthogonale Komplement $(TM_p)^{\perp}$ von TM_p aufspannen.

Hinweis: Betrachten Sie die Komponentenfunktionen von f und deren Gradienten.

- (b) M ist orientierbar.
- 4. (a) Sei X ein Vektorfeld auf M und $c:(\alpha,\omega)\to M$ eine maximale Integralkurven von X. Zeigen Sie, dass genau einer der folgenden Fälle eintritt:
 - i. c ist konstant,
 - ii. c ist injektiv,
 - iii. c ist auf ganz \mathbb{R} definiert und periodisch (d.h. es existiert ein T>0 mit c(t+T)=c(t) für alle $t\in\mathbb{R}$,) und es existiert eine Einbettung $\overline{c}:\mathbb{R}/T\mathbb{Z}\to M$ mit $\overline{c}(\pi(t))=c(t)$.
 - (b) Ist X ein beschränktes Vektorfeld auf \mathbb{R}^n (d.h. X hat die Gestalt X(p) = (p, V(p)), wobei $V : \mathbb{R}^n \to \mathbb{R}^n$ beschränkt ist), so ist X vollständig.

Hinweis: Satz (5.3).

Abgabe: Montag, 10. Dezember, vor Beginn der Vorlesung. Bitte werfen Sie Ihre Lösungen in den dafür vorgesehenen Briefkasten im Kellergeschoss der Eckerstr. 1

Anwesenheitsaufgaben

- 1. Seien o, \tilde{o} zwei Orientierungen einer glatten Mannigfaltigkeit M. Zeigen Sie: Die Mengen $\{p \in M \mid o(p) = \tilde{o}(p)\}$ ist offen.
- 2. Zeigen Sie:

 $o: S^2 \to \bigcup_{p \in S^2} \mathscr{O}(TS_p^2), \ p \mapsto [(v_1, v_2)], \text{ wobei } [(p, v_1, v_2)] \text{ eine positiv orientierte Basis von } \mathbb{R}^3 \text{ ist, ist eine Orientierung von } S^2.$