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We want to read the paper in the title. It contains an important techni-
cal result about “moduli spaces of manifolds” that has found applications in
different areas of Riemannian geometry, differential topology, and theoretical
physics. The Main Theorem of [4] says that a certain map

(1) α : BCd −→ Ω∞−1MTO(d)

is a weak homotopy equivalence.
Taking π0, that is, the set of connected components, on the left hand side, we

get the set of cobordism classes of (d−1)-manifolds. On the right hand side, we
get the homotopy group πd−1MO of the unoriented Thom spectrum. Thus, after
applying π0, we obtain the Pontryagin-Thom isomorphism in dimension d −
1. Thus, (1) is a refinement of the Pontryagin-Thom theorem to the level of
spaces. There are similar results for the oriented cobordism category, and more
generally, for cobordisms with tangential structure.

During the talk, we will also learn several important tools from algebraic
and differential topology, among them simplicial sets and their realisations,
and various different constructions of classifying spaces for bundle of manifolds
and cobordisms, sometimes also called “moduli spaces”. The diagram below
shows the interdependence of the talks.
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If one considers the oriented case in dimension 2, one recovers [5, Theo-
rem 1.1]. They consider the stable mapping class group Γ∞ of Riemann surfaces,
where “stable” here means “of arbitrarily high genus”. Applying Quillen’s plus
construction to its classifying space, one obtains a space BΓ+

∞ that is weakly
homotopy equivalent to an infinite loop space Ω∞CP∞−1. This is one of the key
steps in the proof of the Mumford conjecture, which describes the rational co-
homology ring of the stable moduli space of oriented surfaces. If there is time,
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we can give an overview of the proof of the Mumford conjecture, or explain
some other applications of (1).

1. Spaces of Manifolds

The classifying space of a diffeomorphism group has a concrete description.
Let M , N be smooth manifolds. Let M be closed, that is, M is compact wi-
thout boundary. Recall the compact-open topology on C(M,N) = C0(M,N).
Then describe the Whitney topologies on Ck(M,N) and on C∞(M,N) [2, Sec-
tion 2.1].

Recall the Whitney embedding theorem. Then show that the space

Emb(M) = colimn→∞
{
ϕ ∈ C∞(M,Rn)

∣∣ ϕ is an embedding
}

is contractible [1, Theorem 20.7]. The action of Diff(M) on Emb(M) is free,
and we call

B∞(M) = BDiff(M) = Emb(M)/Diff(M)

the classifying space of the diffeomorphism group. Show that as a set,

B∞(M) ∼=
{
A ⊂ Rn ⊂ R∞

∣∣ n ∈ N
and A is a C∞-submanifold diffeomorphic to M

}
,

and describe its quotient topology as “C∞-Gromov-Hausdorff topology”. One
can show that EDiff(M)→ B∞(M) is a Diff(M)-principal bundle.

Consider the map

E∞(M) = EDiff(M)×Diff(M) M −→ B∞(M) .

Using the Whitney embedding theorem, show that for each fibre bundle E → B
with fibre M and structure group Diff(M), there exists a pullback diagram

E

����

// E∞(M)

����
B

f // B∞(M) ,

where f is unique up to homotopy. In other words, E∞(M) → B∞(M) is a
universal M -family.

2. The Cobordism Category

We define the cobordism category Cd as a topological category. Since this a
(small) topological category (a.k.a. a category object in T ), recall first that the
category T of topological spaces is a monoidal category. Then define topological
categories.

Recall talk 1 and repeat the construction of E∞(W ) → B∞(W ) for cobor-
disms W as explained in [4, Section 2.1]. Let R2

+ = { (a, b) ∈ R2 | a < b } and
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define the cobordism category with

ob Cd ∼= R×
∐
[M ]

B∞(M) ,

mor Cd ∼= ob Cd t R2
+ ×

∐
[W ]

B∞(W ) .

Here [M ] runs over diffeomorphism classes of (d− 1)-dimensional closed mani-
folds, and [W ] runs over diffeomorphism classes of d-dimensional cobordisms.
See also [1, Definition 20.19]

Finally, also explain the “oriented version” BC+
d .

3. Simplicial Sets and Geometric Realisations

The passage from categories and other abstract constructs to topological
spaces capturing some of their properties is one of the central methods in the
paper [4]. The purpose of this talk is to introduce simplicial sets and their
classifying spaces. They will be needed in some of the later talks, and they also
forms one of the more classical ways to turn categories into spaces. Milnor’s
article [6] is one of the main sources for this talk. We want to rephrase his
results in modern language, as outlined in the following.

Define the category ∆ with

ob ∆ = N ,

mor∆(m,n) =
{

nondecreasing maps {0, . . . ,m} → {0, . . . , n}
}
.

Introduce the category sC of simplicial objects in some category C as contravari-
ant functors from ∆ to C. One often denotes simplicial objects by X•. Introduce
the face maps ∂i : Xm+1 → Xm and the degeneracies si : Xm → Xm+1.

Explain the singular functor Sing : T → sSet and the geometric realisati-
on | · | : sSet → T as in [6]. Then we have the classical adjunction of func-
tors | · | a Sing. For a topological space X, one gets a natural map |SingX| → X.
Show that this a weak homotopy equivalence. As a consequence, singular (co-)
homology is the unique (co-) homology on the category T that is invariant
under weak homotopy equivalences.

The categorical product on simplicial sets is the diagonal simplicial set. Be-
cause of the adjunction | · | a Sing, it is clear (but still somewhat counterintui-
tive) that |K• × L•| is homeomorphic to |K•| × |L•|.

Finally, we can extend geometric realisation also to simplicial objects in other
categories. For a simplicial space, the construction of its geometric realisation is
almost the same as above. The realisation of a simplicial category is a topological
category, and so on.

4. Sheaves on the Category of Manifolds
“Einfach alle Pfeile umdrehen und Yoneda-Lemma anwenden”

For the construction of the classifying space BCd of the topological catego-
ry Cd, we will use sheaves on the category X of smooth manifolds. This talk is
meant as a warm-up.



4 ON GMTW

A sheaf on X with values in some category C is a contravariant functor X → C
that satisfies the usual gluing property for open coverings of individual mani-
folds [5, Definition 2.1]. Smooth maps to a given manifold Y form a typical
example C( · , Y ). Indeed, this gives the embedding of the category X into the
category of sheaves on X that we alluded to in the subtitle.

As another typical example, we want to consider a sheaf that assigns to
each manifold all fibre bundles (say, with a given fibre and structure group)
over it. There are some problems with the näıve approach that are solved by
introducing graphical sheaves [5, Definition 2.2]. Let G be a topological group,
for example G = U(k) or G = Diff(M). Then principal G-bundles form a
graphical sheaf G. Its concordance classes are represented by |G|, which is a
model for the classifying space BG.

5. Classifying Spaces of Sheaves and Weak Equivalences

Let F be a sheaf on X and let X be a manifold Two elements of F(X)
are called concordant if they extend to an element of F(X × R). Concordance
classes of a sheaf F define a contravariant functor X 7→ F [X]. In general, it is
too coarse to be a sheaf. In this talk, we will construct a space representing F [ · ].
This allows us to define a notion of weak equivalence of sheaves. We follow [4,
Section 2.2], which summarises [5, Section 2.4 and Appendix A.1]

Because extended simplices are manifolds, each sheaf F with values in C de-
fines a simplicial object F• in sC, and one can take its geometric realisation |F|.
The space |F| represents F [X], more precisely

F [X] = [X, |F|] ,

see [5, Appendix A.1].
A map v of sheaves induces a map |v| between their classifying spaces, and

we call v a weak equivalence if |v| is a homotopy equivalence. To check that v
is a weak equivalence, we use the Surjectivity Criterion [5, Proposition 2.18]:
It suffices to show that v induces surjective maps between relative concordance
classes. This is an important step in the proof of the main result (1).

6. Cobordism Sheaves

To apply the methods of talk 5 to the classifying space of the cobordism
category Cd of talk 2, we need to give sheaf model for it. To each manifold X,
we associate a set of bundles of cobordisms over X that are embedded in R∞.
We regard such cobordisms as morphisms between their boundaries, obtaining
a topological category. We consider two such sheaves of topological categories,
Ct
d and C⊥d , which differ in the way the collars are treated. The sheaf C⊥d is

isomorphic to the sheaf represented by the topological category Cd; this connects
the present talk to the left hand side of (1). This is explained in [4, Section 2.3].

The two sheaves Ct
d and C⊥d are weakly equivalent. This proved by combining

a geometric construction with the surjectivity criterion introduced in talk 5,
see [4, Proposition 4.4].
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7. Madsen-Tillmann spectra and the Pontryagin-Thom
construction

We first recall the Pontryagin-Thom construction, which turns cobordism
classes of manifolds into elements of higher homotopy groups of Thom spaces.
Any closed smooth d-manifold M can be identified with a submanifold of Rd+n

using the Whitney embedding theorem if n is sufficiently large. The Gauß map
of this embedding maps M to the Grassmannian Gd,n of d-planes in Rd+n.

Let U⊥d,n → Gd,n denote the complementary n-plane bundle, then its pullback

can be identified with a tubular neighbourhood of M ⊂ Rd+n. Collapsing eve-
rything else, one obtains a map from the Alexandrov compactification Sd+n

of Rn+d to the Thom space MTOd+n(d) = Th(U⊥d,n). By the results of Pontrya-

gin and Thom, is establishes an isomorphism from the group ΩO
d of d-manifolds

up to cobordism to

πn+dMTOd+n(d) .

There are natural maps ΣMTOd+n(d) → MTOd+n+1(d) that turns these
space into a spectrum MTO(d). To MTO(d), we associate infinite loop spaces

Ω∞+kMTO(d) = colimn→∞Ωn+dMTOd+n−k(d) .

The right hand side of (1) is of this form. If one does not restrict to a fixed
dimension d, one can construct the classical Thom spectrum MO. One should
note that the group O = colimn→∞O(n) classically refers to the structure
group of the normal bundle, whereas here, we fix the structure group O(d) of
the tangent bundle. Hence the extra “T” in the notation. The relation between
these structures is explained in [4, Section 3.1].

The oriented Madsen-Tillmann spectrum MTSO(d) is constructed similarly.
More generally, we can consider arbitrary tangential structures and define their
Madsen-Tillmann spectra as well as their cobordism categories. If there is time,
this could be explained in this talk.

8. A Sheaf Model for the Madsen-Tillmann Spectrum

As in talk 6, we construct a sheaf Dd of cobordisms over the category X of
manifolds. By a bundle version of the Pontryagin-Thom construction, one shows
that |Dd| is weakly homotopy equivalent to the infinite loop space Ω∞−1MT (d)
on the right hand side of (1), see [4, Theorem 3.4].

9. Cocycle Sheaves and Classifying Spaces I

To a small category C one associates a simplicial set, the nerve N•C. It
is a simplicial set, where the set of k-simplices consists of all collections of k
composable arrows. Faces and degeneracies are given by composing two adjacent
arrows or inserting identities, respectively. Its geometric realisation is called the
classifying space BC = |N•C|.

If F is a sheaf of categories, one can consider a bisimplicial set where one
simplicial direction describes the nerve as above and the other one describes the
classifying space of a sheaf as in talk 5. Taking the geometric realisation, we can



6 ON GMTW

construct the classifying space B |F| of a sheaf of categories. Later, we will turn
the cobordism category Cd of talks 2 into a sheaf Cd, such that BCd = B |Cd|.

The cocycle sheaf βF is a different construction with the same purpose,
see [4, Section 2.4] for an overview and [5, Section 4.1] for the details. In the next
talk, we show that |βF| and B |F| are homotopy equivalent [5, Theorem 4.2].
Elements of βF(X) are pairs of locally finite open coverings U of X and systems
of compatible morphisms in F for each inclusion of finite intersections of the
sets of U .

If one considers again the sheaf G of principal G-bundles for a topological
group G, then βG can be interpreted as a “sheaf of gluing data” for principal
G-bundles. Then [5, Theorem 4.2] gives another proof of the well-known fact
that BG classifies G-bundles, see talk 4.

10. Cocycle Sheaves and Classifying Spaces II

The purpose of this talk is to prove [5, Theorem 4.2], that is, to show that |βF|
and B |F| are homotopy equivalent. This proof is somewhat technical and con-
tained in [5, Appendix A.3]. If one talk is not enough, we can split it further.

11. Equivalence of Cobordism Sheaves

In this talk, we complete the proof of (1). By combining methods from talks 6
and 8, we define yet another sheaf of cobordisms Dt

d . Then there is a zig-zag of
functors

Cd

��

Dt
d

~~   
Ct
d Dd ,

see [4, Chapter 4]. Each of these functors is a weak equivalence. For the left-
most, we have shown this in talk 6. For the rightmost functor, we first have to
replace Dt

d by its cocycle sheaf βDt
d . In each case, the argument is reduced to

the surjectivity criterion from talk 5.
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