1st Exercise Sheet, Set Theory of the Real Line, WS 2014/2015

Giorgio Laguzzi

23 October, 2014

Exercise 1

Given $s \in \omega^{<\omega}$ we define

if k is even, then $a_n^k := \langle 1, 1, ..., 1, 1, 0 \rangle$, with $|a_n^k| = n + 1$

if k is odd, then $a_n^k := \langle 0, 0, \dots, 0, 0, 1 \rangle$, with $|a_n^k| = n + 1$

For every $x \in \omega^{\omega}$, let $j(x) := a_{x(0)}^{0} \hat{a}_{x(1)}^{1} \hat{\ldots} \hat{a}_{x(n)}^{n} \hat{\ldots}$ Let $C := \{x \in 2^{\omega} : \forall n \exists m_0, m_1 > n(x(m_0) \neq x(m_1))\}$, i.e., C consists of those binary sequences which are not eventually constant.

Show that $j: \omega^{\omega} \to 2^{\omega} \setminus C$ is a homeomorphism.

Exercise 2

Let $k: 2^{\omega} \to [0,1]$ be the binary expansion, i.e., for $x \in 2^{\omega}$,

$$k(x):=\sum_{n\in\omega}x(n)\cdot 2^{-n+1},$$

and let $D := 2^{\omega} \setminus C$ (C as in the previous exercise).

Show that k is continuous and that $k \upharpoonright D$ is a homeomorphism.