$3^{ m rd}$ Exercise Sheet, Set Theory of the Real Line, WS 2014/2015

Giorgio Laguzzi

6 November, 2014

Exercise 5

Let \mathcal{K} be the σ -ideal of compact subsets of ω^{ω} . Show that

 $\mathsf{add}(\mathcal{K}) = \mathsf{non}(\mathcal{K}) = \mathfrak{b} \quad \text{and} \quad \mathsf{cov}(\mathcal{K}) = \mathsf{cof}(\mathcal{K}) = \mathfrak{d}.$

Exercise 6

Let $\{s_n : n \in \omega\}$ be some fixed enumeration of $2^{<\omega}$ and $\{X_\alpha : \alpha < \lambda\}$ be as defined during the lecture of November, the 6th. Show that there exists an increasing sequence $\{k_n : n \in \omega\}$ such that

- 1. for all $n \in \omega$, $\sum_{j \le k_n} |s_j| < k_{n+1}$
- 2. $\forall \alpha < \lambda \exists^{\infty} n(X_{\alpha} \cap [k_{2n}, k_{2n+1}) \neq \emptyset).$

(Hint: look at Lemma 2.4.3 on page 55 in [BJ95])