$8^{ m th}$ Exercise Sheet, Set Theory of the Real Line, WS 2014/2015

Giorgio Laguzzi

11 December, 2014

Exercise 15

Let $f \in \omega^{\omega}$ be such that $f(n) = 2^n$. Let $S \in ([\omega]^{<\omega})^{\omega}$ (i.e., S in an infinite sequence of finite subsets of ω) be such that for all $n \in \omega$, $|S(n)| \leq 2^{\omega}$. We call such a sequence an *f*-slalom and we let C be the set of all *f*-slaloms, for $f(n) = 2^n$. We say that a forcing \mathbb{P} satisfies the Sacks property iff

 $\Vdash_{\mathbb{S}} \forall x \in \omega^{\omega} \exists S \in \mathcal{C} \cap V \forall n(x(n) \in S(n)),$

where V is the ground model. (Roughly, any real in the extension is "captured" by a slalom in the ground model.)

Show that:

- 1. the Sacks forcing S satisfies the Sacks property;
- 2. the random forcing \mathbb{B} does not satisfy the Sacks property.

Exercise 16

Let $f: \omega \to 2$ be a partial function with $|codom(f)| = \omega$. Define the tree $p_f \subseteq 2^{<\omega}$ as

$$p_f := \{ t \in 2^{<\omega} : \forall n < |t| (n \in \operatorname{dom}(f) \Rightarrow f(n) = t(n)) \}.$$

Let $\mathbb{V} := \{p_f : f : \omega \to 2 \text{ partial function with } |codom(f)| = \omega\}$, ordered by $q \leq p \Leftrightarrow q \subseteq p$. \mathbb{V} is called *Silver forcing*.

Show that \mathbb{V} preserves ω_1 and satisfies the Sacks property.