Abteilung für Mathematische Logik

Prof. Dr. Heike Mildenberger

Dr. Giorgio Laguzzi

Mengenlehre

Wintersemester 2015-2016 Übungsblatt 3, Abgabe am 09.11.2015

1. Sei $A \neq \emptyset$ eine Menge, und sei R eine fundierte Relation auf A. Wir definieren rk: $A \to \mathbb{V}$ wie folgt:

$$rk(a) = \bigcup \{ S(rk(b)) : bRa \}.$$

Geben Sie eine Operation \mathbf{F} an, so dass \mathbf{F} wie im Satz über die transfinite Rekursion (mit der Relation (A,R) anstelle von (\mathbf{On},\in)) die Existenz von rk rechtfertigt. Überlegen Sie sich auch, warum man mit der Relation (A,R) anstelle von (\mathbf{On},\in) arbeiten kann. Haben Sie eine einschränkendere Beschreibung der Bildmenge von rk?

- 2. Sei wieder (A, R) eine fundierte Relation.
 - (a) Gibt es eine zweistellige Relation $R' \supseteq R$, so dass (A, R') eine Wohlordnung ist?
 - (b) Gibt es eine ordungserhaltende Surjektion von (A, R) auf eine Wohlordnung?

Vorspann zu Aufgabe 3 und zu Aufgabe 4:

Sei X eine Menge. Wir definieren die folgenden Varianten des Auswahlaxioms:

- $AC_{\omega}(X)$ (Abzählbares Auswahlaxiom auf X): Für jedes $\{P_n : n \in \omega\}$ mit $P_n \subseteq X$, es gibt eine Funktion $f : \omega \to V$, so dass $\forall n \in \omega(f(n) \in P_n)$.
- DC(X) (Abhändige-Auswahlen-Axiom auf X): Für jedes $R \subseteq X \times X$ mit $\forall x \in X \exists y \in X((x,y) \in R)$, es gibt eine Folge $\langle x_n : n \in \omega \rangle$, so dass $\forall n \in \omega((x_n,x_{n+1}) \in R)$.
- AC_{ω} (Abzählbares Auswahlaxiom): Für alle Mengen X gilt $AC_{\omega}(X)$.
- DC (Abhändige-Auswahlen-Axiom, axiom of dependent choice): Für alle Mengen X gilt DC(X).
- 3. Zeigen Sie: Wenn es eine surjektive Funktion $f: Y \to X$ gibt, dann $AC_{\omega}(Y) \Rightarrow AC_{\omega}(X)$ und $DC(Y) \Rightarrow DC(X)$.
- 4. Wir betrachten die folgenden möglichen Implikationen:

$$AC_{\omega} \to AC$$

$$AC_{\omega} \to DC$$

$$\mathrm{AC} \to \mathrm{DC}$$

$$AC \to AC_{\omega}$$

$$DC \to AC_{\omega}$$

$$DC \rightarrow AC$$

Finden Sie die drei unter diesen, die aus ZF folgen, und beweisen Sie diese. Die technischen Mittel zum Beweis der Nicht-Implikationen werden wir in der Vorlesung kennen lernen.