Abteilung für Mathematische Logik

Prof. Dr. Heike Mildenberger Dr. Giorgio Laguzzi

Mengenlehre

Wintersemester 2015-2016 Übungsblatt 6, Abgabe am 30.11.2015

- 1. Sei λ eine reguläre Kardinalzahl. Sei $\langle \kappa_i : i < \lambda \rangle$ eine schwach monoton steigende Folge unendlicher Kardinalzahlen. Eine Folge $\langle a_i : i \in \lambda \rangle$ heißt schwach monoton steigend, wenn gilt $i < j \in \lambda \rightarrow a_i \leq a_j$.
 - Gilt $\prod_{i < \lambda} \kappa_i \le (\sup_{i < \lambda} \kappa_i)^{\lambda}$?
 - Gilt $\prod_{i<\lambda} \kappa_i \ge (\sup_{i<\lambda} \kappa_i)^{\lambda}$?
- 2. Für jede Menge x betrachten wir $\operatorname{th}(x) = \bigcup \{\bigcup^{(n)} x : n \in \omega\}$ die $\operatorname{transitive} H\"{u}lle \ von \ x$ (Def. 1.45, Seite 16, Skript von Heike Mildenberger). Wir definieren $H_{\omega_1} := \{x : \operatorname{th}(x) < \omega_1\}$, die Menge der erblich abzählbaren Mengen. Ist (H_{ω_1}, \in) ein Modell von ZFC? Welches Axiom fehlt? Welche Axiome von ZFC gelten in (H_{κ}, \in) , wenn κ eine starke Limeskardinalzahl ist? Eine Kardinalzahl κ heißt starke Limeskardinalzahl, wenn für alle $\mu < \kappa$ die Ungleichung $2^{\mu} < \kappa$ gilt.

Sei α eine Ordinalzahl. Eine Teilmenge $X \subseteq \alpha$ heißt eine offene Halbgerade gdw es $\beta < \alpha$ gibt, so dass $X := \{\xi < \alpha : \xi > \beta\}$ oder $X := \{\xi < \alpha : \xi < \beta\}$. Wir betrachten die Ordnungstopologie von α , d.h. die Topologie, die die Menge der offenen Halbgeraden als Subbasis hat. (In dieser Topologie sind genau die Vereinigungen von offenen Intervallen offene Mengen.)

- 3. (a) Gibt es isolierte Punkte?
 - (b) Zeigen Sie: $C \subseteq \alpha$ ist genau dann abgeschlossen, wenn

$$\forall \lambda < \alpha(\lambda \text{ Limes } \wedge \lambda = \bigcup (C \cap \lambda) \to \lambda \in C).$$

- (c) Ist die Ordnungstopologie von α hausdorffsch?
- (d) Zeigen Sie: α mit der Ordnungstopologie hat genau dann eine abzählbare Basis, wenn $\alpha < \omega_1$ ist.
- 4. Wir betrachten ω_1 mit die Ordnungstopologie. Sei $f:\omega_1\to\mathbb{R}$ stetig. Zeigen Sie, dass

$$\exists \alpha < \omega_1 \forall \beta > \alpha(f(\beta) = f(\alpha)).$$

(Hinweise: Sei $L := \{\lambda < \omega_1 : \lambda \text{ Limes}\}$. Für $\epsilon > 0$, finden Sie eine Funktion $g : L \to \omega_1$ so dass für alle $\alpha \in L$, $g(\alpha) < \alpha$ und gibt es ein Intervall $I \subseteq \mathbb{R}$ so dass $f[(g(\alpha), \alpha)] \subseteq I$. Dann verwenden Sie das Lemma von Fodor für g. Zum Schluss wiederholt man den Vorgang für eine fallende Folge $\{\epsilon_n : n \in \omega\}$ und Intervalle I der Länge ϵ_n .)

5. (Freiwillige Zusatzaufgabe. Es gibt Bonuspunkte.) Für welche α gibt es eine ordungstreue Injektion $f: (\alpha, \in) \to (\mathbb{R}, <)$? (Hinweis: Eine Obergrenze für diese α leitet sich aus Aufgabe 4 ab. Für die andere Hälfte der Antwort kann man eine Definition durch Rekursion suchen.)