Abteilung für Mathematische Logik Dr. Giorgio Laguzzi Christian Bräuninger

Übungsblatt 10

Abgabe am 13.2.2020 vor der Vorlesung

Remind the following types of infinite trees.

Given a tree p remind that stem(p) is the longest node in p compatible with all other nodes in p.

- p ⊆ 2^{<ω} is called a *perfect* tree iff for every s ∈ p there exists t ∈ p such that t ⊇ s and t[^]0, t[^]1 ∈ p (such t is called a *splitting node*).
- $p \subseteq 2^{<\omega}$ is Silver iff p is perfect and for every $s, t \in p$, with |s| = |t| one has $s^{-0} \in p \Leftrightarrow t^{-0} \in p$ and $s^{-1} \in p \Leftrightarrow t^{-1} \in p$.
- p ⊆ ω^{<ω} is called *Miller* tree iff p is perfect and for every s ∈ p there exists t ⊇ s in p such that there are infinitely many distinct n_k ∈ ω such that for all k ∈ ω, t[^]n_k ∈ p.
- $p \subseteq \omega^{<\omega}$ is called *Laver* tree iff p is perfect and for every $t \supseteq p$ extending stem(p) there are infinitely many distinct $n_k \in \omega$ such that for all $k \in \omega$, $t \cap n_k \in T$.

N.B.: In all questions in the following three exercises please provide an argument for either a positive or a negative answer.

Exercise 1. Let X be any comeager set.

- (2 points) is there a perfect tree p such that $[p] \subseteq X$?
- (3 points) is there a Silver tree p such that $[p] \subseteq X$?
- (3 points) is there a Miller tree p such that $[p] \subseteq X$?
- (4 points) is there a Laver tree p such that $[p] \subseteq X$?

Remind the Lebsgue measure μ on 2^{ω} and ω^{ω} be defined as follows:

- let *m* be the measure on $\{0, 1\}$ such that $m(\{0\}) = m(\{1\}) = \frac{1}{2}$ and then put μ be the corresponding product measure on 2^{ω} .
- let *m* be the measure on ω such that $m(\{n\}) = \frac{1}{n}$ and then put μ be the corresponding product measure on ω^{ω} .

Exercise 2. Let X be any set with $\mu(X) = 1$.

- (2 points) is there a perfect tree p such that $[p] \subseteq X$?
- (3 points) is there a Silver tree p such that $[p] \subseteq X$?
- (3 points) is there a Miller tree p such that $[p] \subseteq X$?
- (4 points) is there a Laver tree p such that $[p] \subseteq X$?

Let δ be the so called *dominating topology* on ω^{ω} , i.e. the topology generated by the following basic open sets:

$$[t,f] := \{ x \in \omega^{\omega} : x \supset t \land \forall n \in \omega(f(n) \le x(n)) \}$$

where $t \in \omega^{<\omega}, f \in \omega^{\omega}$ with $f \supset t$.

Exercise 3. Let X be any set comeager w.r.t δ .

- (2 points) is there a perfect tree p such that $[p] \subseteq X$?
- (3 points) is there a Silver tree p such that $[p] \subseteq X$?
- (3 points) is there a Miller tree p such that $[p] \subseteq X$?
- (4 points) is there a Laver tree p such that $[p] \subseteq X$?