Abteilung für Mathematische Logik Dr. Giorgio Laguzzi Christian Bräuninger

Übungsblatt 6

Abgabe am 10.12.2019 vor der Vorlesung

Exercise 1. (4 points) Let $S \subset \kappa$ be stationary and $f : S \to \kappa$ function so that $\forall \alpha < \kappa(f(\alpha) < \alpha)$. Then there exists $S' \subseteq S$ stationary such that $f \upharpoonright S'$ is constant, i.e., there is $S' \subseteq S$ stationary such that $\exists \gamma < \kappa \forall \alpha \in S'(f(\alpha) = \gamma)$.

Exercise 2. (4 points) Consider ω_1 with the order topology and let $f : \omega_1 \to \mathbb{R}$ be a continuous function. Show that

$$\exists \alpha < \omega_1 \forall \beta > \alpha(f(\beta) = f(\alpha)).$$

Exercise 3. (4 points)

Let κ be a regular cardinal and $\mathfrak{B} := \mathfrak{P}(\kappa)/\mathrm{Cub}_{\kappa}^*$. Denote by [A] the equivalence class of $A \subseteq \kappa$.

- Show that \mathfrak{B} is a Boolean algebra
- Given $\{A_{\alpha} : \alpha < \kappa\}$ family of subsets of κ , show that $\bigwedge_{\alpha < \kappa} [A_{\alpha}]$ always exists and it is equal to [D], where D is the diagonal intersection

$$D := \{ \gamma < \kappa : \forall \alpha < \gamma (\gamma \in C_{\alpha}).$$