Abteilung für Mathematische Logik Dr. Giorgio Laguzzi Christian Bräuninger

Übungsblatt 1

Abgabe am 29.10.2019 vor der Vorlesung

Excercise 1. Show that there is a family \mathcal{A} of ω_{ω} many finite sets such that no $\mathcal{B} \subseteq \mathcal{A}$ of cardinality ω_{ω} forms a Δ -system.

Excercise 2. Show that if $\kappa \leq 2^{\omega}$ and X_{α} are separable spaces for $\alpha < \kappa$, then $\prod_{\alpha < \kappa} X_{\alpha}$ is separable.

Hint: Consider first the space ${}^{I}X$, where $I \subseteq {}^{\omega}2$ and X is separable. Let D be dense in X. Let E be the set of $\varphi \in {}^{I}D$, such that for some $n \in \omega$,

$$\forall f,g \in I \left(f \upharpoonright n = g \upharpoonright n \to \varphi(f) = \varphi(g) \right).$$

Then E is dense in X.

Excercise 3. Show that if $\kappa > 2^{\omega}$, then the space $\kappa 2$ (where $2 = \{0, 1\}$ has the discrete topology) is not separable.

Hint: If $D \subseteq {}^{\kappa}2$ is countable, show that there are $\alpha < \beta$ such that $\forall f \in D(f(\alpha) = f(\beta))$.