Abteilung für Mathematische Logik Dr. Giorgio Laguzzi Christian Bräuninger

Übungsblatt 2

Abgabe am 5.11.2019 vor der Vorlesung

For $x, y \in \omega^{\omega}$ we say that y eventually dominates $x \ (x \leq^* y)$ if there exists $n \in \omega$ such that for all $k \geq n$ we have $x(k) \leq y(k)$.

A family $F \subseteq \omega^{\omega}$ is called *dominating* if for all $x \in \omega^{\omega}$ there is $y \in F$ such that $x \leq^* y$, and *unbounded* if for all $x \in \omega^{\omega}$ there is $y \in F$ such that $y \not\leq^* x$.

Exercise 1. Assume $MA(\kappa)$ for $\omega < \kappa < 2^{\omega}$. Show that there is no dominating family of size κ .

Exercise 2. Assume $MA(\kappa)$ for $\omega < \kappa < 2^{\omega}$. Show that there is no undbounded family of size κ .

For $s \in [\omega]^{<\omega}$, $A \in [\omega]^{\omega}$ consider the set

$$[s,A] := \{ X \in [\omega]^{\omega} \mid s \subseteq X \subseteq A \}.$$

The Ellentuck topology τ_E on $[\omega]^{\omega}$ is the topology generated by these sets [s, A]. Recall that $N \subseteq [\omega]^{\omega}$ is called τ_E -closed nowhere dense if for all $s \in [\omega]^{<\omega}$, $A \in [\omega]^{\omega}$ there are $s' \in [\omega]^{<\omega}$, $A' \in [\omega]^{\omega}$ such that $[s', A'] \subseteq [s, A]$ and $[s', A'] \cap N = \emptyset$.

Exercise 3. Assume $\mathsf{MA}(\kappa)$ for $\omega < \kappa < 2^{\omega}$. Show that for every κ -sized family F of τ_E -closed nowhere dense subsets of $[\omega]^{\omega}$ we have $\bigcup F \subsetneq [\omega]^{\omega}$.