Übungsblatt 3

Abgabe am 12.11.2019 vor der Vorlesung

Consider the poset $\mathbb{A} = \{(n,T) \mid n \in \omega, T \subseteq 2^{<\omega} \text{ is a closed nowhere dense tree} \}$ with

 $(k,T') \leq (n,T) \Leftrightarrow k \geq n, T' \supseteq T \text{ and } T' \cap {}^{n}2 = T \cap {}^{n}2$

Given a filter $G \subseteq \mathbb{A}$, put $T_G := \bigcap \{T : \exists n(n,T) \in G\}.$

Exercise 1. (3 points) Show that for $k \in \omega$ the set

$$D_k := \{ (n, T) \in \mathbb{A} \mid n \ge k \}$$

is dense. Then prove that for a filter G in A with $G \cap D_k \neq \emptyset$ for all $k \in \omega$, the tree T_G is infinite.

Exercise 2. (5 points) Show that for $k \in \omega$ the set

$$E_k := \left\{ (n,T) \in \mathbb{A} \mid \forall t \in (T \cap {}^k 2) \exists s \supseteq t : s \cap 0, s \cap 1 \in (T \cap {}^n 2) \right\}$$

is dense.

Exercise 3. (2 points) Let G be a filter in A with $G \cap E_k \neq \emptyset$ for all $k \in \omega$. Show that T_G is a perfect tree.

Exercise 4. (2 points) Show that for $k \in \omega$ the set

$$H_k := \left\{ (n,T) \in \mathbb{A} \mid \forall s \in {}^k 2 \; \exists \tau_s \supseteq s \; : \; |\tau_s| < n \land \tau_s \notin T \right\}$$

is dense. If G is a filter in \mathbb{A} with $G \cap H_k \neq \emptyset$ for all $k \in \omega$, show that the tree T_G is (closed) nowhere dense.

Bonus. Let $\{S_{\alpha} \mid \alpha < \kappa\}$ be a family of nowhere dense trees. Then apply $\mathsf{MA}(\kappa)$ to the poset A in order to find a suitable closed nowhere dense set B covering all S_{α} 's.