Abteilung für Mathematische Logik Dr. Giorgio Laguzzi Christian Bräuninger

Übungsblatt 4

Abgabe am 19.11.2019 vor der Vorlesung

Exercise 1. (4 points) Show that a complete Boolean algebra \mathcal{B} has the countable chain condition (c.c.c.) if and only if there is no uncountable sequence $\langle b_{\alpha} : \alpha < \omega_1 \rangle$ in \mathcal{B} such that $\alpha < \beta \rightarrow b_{\alpha} < b_{\beta}$.

Exercise 2. (4 points) Show that the product space 2^{ω_1} is an example of a compact c.c.c. Hausdorff space in which (regardless of the axioms of set theory) there is a union of ω_1 many closed nowhere dense sets which is not of first category, i.e. can not be written as a countable union of closed nowhere dense sets.

 $\langle \mathbb{P}, \leq \rangle$ is called *separative* if \leq is a partial order in the strict sense and whenever $p \not\leq q$, there is an r such that $r \leq p$ and $r \perp q$.

Recall that for a partial order \mathbb{P} there is a complete Boolean algebra \mathcal{B} and a map $i: \mathbb{P} \to \mathcal{B} \setminus \{\emptyset\}$ such that:

- 1. $i[\mathbb{P}]$ is dense in $\mathcal{B} \setminus \{\emptyset\}$.
- 2. $\forall p, q \in \mathbb{P} \left(p \leq q \rightarrow i(p) \leq i(q) \right)$.
- 3. $\forall p, q \in \mathbb{P} (p \perp q \leftrightarrow i(p) \cap i(q) = \emptyset)$.

Exercise 3. (4 points) Show that \mathbb{P} is separative if and only if *i* is injective and satisfies

$$\forall p, q \in \mathbb{P} \left(p \le q \leftrightarrow i(p) \le i(q) \right).$$

Bonus. Give an example of a partial order \mathbb{P} such that i is injective, but \mathbb{P} is not separative.