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Abstract. We study the topological and set-theoretical nature of Paretian social welfare
relations in a setting with infinite time horizon. Specifically, we answer questions posed in
Bowler et al. (2020) about the interplay between total welfare relations satisfying Pareto
and anonymity principles with subsets of real numbers not satisfying the Baire property.

1. Introduction and preliminaries

In recent times, several papers have pointed out some interplay between theoretical economics
and mathematical logic. More specifically, some connections have arisen between social
welfare relations on infinite utility streams and descriptive set theory; such an interaction
has gained the attention both from the economic side and from the set-theoretic side.
Notably, regarding the former, the following pioneering results are brought up: Lauwers
(2010) proves that the existence of a total social welfare relation satisfying Pareto and
anonymity implies the existence of a non-Ramsey set; Zame (2007) proves that the exis-
tence of a total social welfare relation satisfying Pareto and anonymity implies the existence
of a non-Lebesgue measurable set.
From the set-theoretic side, we refer to Bowler et al. (2020), where the authors investigate
particular types of non-Ramsey sets and prove some connections with social welfare relations
on infinite utility streams. Moreover, the authors also pose as an open question to investigate
whether this interplay with Pareto welfare relations also involves non-Baire sets (Problem
11.15).
Laguzzi (2020) deals with Bowler et al. (2020, Problem 11.15) in the specific case of strong
Pareto principle. The proof’s method used there is based on some application of Kuratowski-
Ulam theorem. Going into the details of that proof reveals that such a method, or some
other variant, cannot work in case we weaken the strong Pareto principle to infinite Pareto
and weak Pareto (see the technical definitions below).
In this paper we investigate the latter two cases and we introduce a different technique for
getting non-Baire sets, relying on a new variant of Mathias and Silver forcing; these results
are stated and proved as Theorem 1 and Theorem 2, and they constitute the main scope of
this paper, expanding the answer to the open question Bowler et al. (2020, Problem 11.15).
In addition to that, we also briefly discuss, in the concluding section, how to analyze certain
combinations of efficiency and equity principles in terms of fragments of AC in a similar
fashion as developed on the set-theoretic side for the regularity properties of subsets of real
numbers.

We now introduce the basic technical notions. Let Y , a non-empty subset of R, be the set
of all possible utilities that any generation can achieve. Then X ≡ Y ω is the set of all
possible utility streams, with an element x ∈ X denoted by x = 〈x(n) : n ∈ ω〉. For all y,
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z ∈ X, we write y ≥ z if ∀n ∈ ω(y(n) ≥ z(n)); y > z if y ≥ z and y 6= z; and y � z if
∀n ∈ ω(y(n) > z(n)).
Let Y <ω be the set of finite sequences of elements from Y . Given σ ∈ Y <ω, the length of
σ is denoted by |σ|. Given σ, τ ∈ Y <ω, we write σ ⊆ τ if and only if |σ| ≤ |τ | and for all
n < |σ|, σ(n) = τ(n). Analogously, in case σ ∈ Y <ω and x ∈ X, we write σ ⊆ x if and only
if ∀n < |σ|, σ(n) = x(n).
A social welfare relation (SWR) is a reflexive and transitive binary relation (i.e. a pre-order)
on infinite utility streams. We consider binary relations on X, denoted by v, with symmetric
and asymmetric parts denoted by ∼ and < respectively, defined in the usual way. We recall
the definition of permutation P , a self map on ω:

P := {π : ω → ω | π is a bijection} .
We denote the set of finite permutations by F , i.e.,

F := {π ∈ P | π(n) = n for all but finitely many n ∈ ω} .

1.1. Equity and Pareto principles. The social welfare relations that we will be concerned
with are required to satisfy following equity and Pareto principles.
Definition. Anonymity (AN): If x, y ∈ X, and there exist i, j ∈ ω such that y(j) = x(i)
and x(j) = y(i), while y(k) = x(k) for all k ∈ ω \ {i, j}, then x ∼ y.
Definition. Strong Pareto (SP): Given x, y ∈ X, if x ≥ y and x(i) > y(i) for some i ∈ ω,
then y < x.
Definition. Infinite Pareto (IP): Given x, y ∈ X, if x ≥ y and x(i) > y(i) for infinitely
many i ∈ ω, then y < x.
Definition. Weak Pareto (WP): Given x, y ∈ X, if x(i) > y(i) for all i ∈ ω, then y < x.
1.2. Mathias-Silver trees. We recall the standard basic notions and notation about tree-
forcings. Let Y := {0, 1} or Y := ω. A subset T ⊆ Y <ω is called a tree if and only if for every
t ∈ T every s ⊆ t is in T too, in other words, T is closed under initial segments. We call the
segments t ∈ T the nodes of T and denote the length of the node by |t|. A node t ∈ T is called
splitting if there are two distinct n, m ∈ Y such that tan, tam ∈ T . Given x ∈ X ≡ Y ω and
n ∈ ω, we denote by x�n the cut of x of length n, i.e., x�n := 〈x(0), x(1), · · · , x(n− 1)〉. A
tree p ⊆ 2<ω is called perfect if and only if for every s ∈ p there exists t ⊇ s splitting. We
define [p] := {x ∈ X : ∀n ∈ ω(x�n ∈ p)}, and x ∈ [p] is called a branch of p.
A tree p ⊆ 2<ω is called Silver tree if and only if p is perfect and for every s, t ∈ p, with
|s| = |t| one has sa0 ∈ p ⇔ ta0 ∈ p and sa1 ∈ p ⇔ ta1 ∈ p. If t is a splitting node of p, we
call |t|+ 1 a splitting level of p and let S(p) denote the set of splitting levels of p. Then set
U(p) := {n ∈ ω : ∀x ∈ [p](x(n) = 1)} and let {npk : k ∈ ω} enumerate the set S(p) ∪ U(p).
We could also define a Silver tree p and its corresponding set of branches [p] relying on the
notion of partial functions. Consider a partial function f : ω → {0, 1} such that dom(f) is
co-infinite (i.e. the complement of the domain of f is infinite); then define Nf := {x ∈ 2ω :
∀n ∈ dom(f)(f(n) = x(n))}. It easily follows from the definitions that there is a one-to-one
correspondence between every Silver tree p and a set Nf . Given any Silver tree p there is a
unique partial function f : ω → {0, 1} such that [p] = Nf . In particular, the set of splitting
levels S(p) correspond to ω \ dom(f). Silver trees are extensively studied in the literature,
as well as their topological properties (e.g., see Halbeisen (2003) and Brendle et al. (2005).)
We now introduce a variant of Silver trees which perfectly serves for our purpose.



Definition. Let p ⊆ 2<ω be a Silver tree with {npk : k ≥ 1} enumeration of S(p) ∪ U(p);
p is called a Mathias-Silver tree (p ∈ MV) if and only if there are infinitely many triples
(npmj

, npmj+1, n
p
mj+2)’s such that:

(1) for all j ≥ 1, mj is even;
(2) for all j ≥ 1, npmj

, npmj+1, n
p
mj+2 are in S(p) with npmj

+ 1 < npmj+1 and npmj+1 + 1 <
npmj+2;

(3) for all j ≥ 1, t ∈ p, i < |t| (npmj
< i < npmj+1 ∨ n

p
mj+1 < i < npmj+2 ⇒ t(i) = 0).

We call (npmj
, npmj+1, n

p
mj+2) satisfying (1), (2) and (3) a Mathias triple.

Remark 1. The idea is that a Mathias-Silver tree is a special instance of a Silver tree that
mimics infinitely often the feature of a Mathias tree, which is that in between the splitting
levels occuring in any Mathias triple (npmj

, npmj+1, n
p
mj+2) all nodes of the tree p take value

0. In the proof of Theorems 1 and 2 this property will be crucial, and indeed it is not clear
how to obtain, if possible, similar results working with Silver trees instead of Mathias-Silver
trees.

Definition. A set X ⊆ 2ω is called Mathias-Silver measurable set (or MV-measurable set)
if and only if there exists p ∈ MV such that [p] ⊆ X or [p] ∩ X = ∅. A set X ⊆ 2ω not
satisfying this condition is called a non-MV-measurable set.

The following lemma is the key step to prove that any set satisfying the Baire property is
MV-measurable, or in other words, that a non-MV-measurable set is a particular instance
of a non-Baire set. The proof is a variant of the construction developed in Halbeisen (2003)
for standard Silver trees.

Lemma 1. Given any comeager set C ⊆ 2ω there exists p ∈MV such that [p] ⊆ C.

Proof. Let {Dn : n ∈ ω} be a ⊆-decreasing sequence of open dense sets such that ⋂
n∈ω

Dn ⊆ C.
Given s ∈ 2<ω, put Ns := {x ∈ 2ω : x ⊃ s}. Recall that if D is open dense, then ∀s ∈ 2<ω
there exists s′ ⊇ s such that Ns′ ⊆ D. We construct p ∈ MV by recursively building up its
nodes as follows: first of all let

s1 = (10000), s2 = (10001), s3 = (10100), s4 = (10101),
s5 = (00000), s6 = (00001), s7 = (00100), s8 = (00101).

• Pick t∅ ∈ 2<ω such that Nt∅ ⊆ D0, and then let F0 :=
8⋃

k=1

{
ta∅ sk

}
and T0 be the

downward closure of F0, i.e., T0 := {s ∈ 2<ω : ∃t ∈ F0(s ⊆ t)};
• Assume Fn is already defined. Let {tj : j ≤ J} enumerate all nodes in Fn (note by
construction J = 8n+1). We proceed inductively as follows: pick r0 ∈ 2<ω such that
Nta0 r0

⊆ Dn+1; then pick r1 ⊇ r0 such that Nta1 r1
⊆ Dn+1; proceed inductively in this

way for every j ≤ J , so rj ⊇ rj−1 such that Ntaj rj
⊆ Dn+1. Finally put r = rJ . Then

define
Fn+1 :=

⋃{
tarask : t ∈ Fn, k = 1, 2, . . . 8

}
and

Tn+1 := {s ∈ 2<ω : ∃t ∈ Fn+1(s ⊆ t)} .
Note that by construction, for all t ∈ Fn+1 we have Nt ⊆ Dn+1. Finally put p := ⋃

n∈ω
Tn.

Then by construction p ∈MV as it is a Silver tree and the use of s1, s2, · · · , s8 ensures that



p contains infinitely many Mathias triples, and so p ∈ MV. It is left to show [p] ⊆ ⋂
n∈ω

Dn.
For this, fix arbitrarily x ∈ [p] and n ∈ ω. By construction there is t ∈ Fn such that t ⊂ x.
Since Nt ⊆ Dn we then get x ∈ Nt ⊆ Dn. �

Corollary 1. If A ⊆ 2ω satisfies the Baire property, then A is a MV-measurable set.

Proof. The proof is a simple application of Lemma 1 and the fact that any set satisfying the
Baire property is either meager or comeager relative to some basic open set Nt. Indeed, if
A is meager, then we apply Lemma 1 to the complement of A and find p ∈ MV such that
[p] ∩ A = ∅. If there exists t ∈ 2<ω such that A is comeager in Nt, then we can use the
construction as in Lemma 1 in order to find p ∈ MV such that [p] ⊆ A, simply by choosing
t∅ ⊇ t, t∅ ∈ D0 and then use the same construction as in the proof of Lemma 1. �

2. Pareto, Anonymity and Mathias-Silver trees

In this section we prove our two main results. The social welfare relations on X = 2ω
satisfying infinite Pareto and anonymity are considered in sub-section 2.1. The social welfare
relations on X = Zω 1 satisfying weak Pareto and anonymity are considered in sub-section
2.2. Note that when dealing with weak Pareto, if Y is well-founded, then one can simply
consider the function f : Y ω → R such that f(x) := min{x(n) : n ∈ ω}; then define
x < y :⇔ f(x) < f(y) and x ∼ y :⇔ f(x) = f(y) in order to get a total SWR on Y ω

satisfying WP and AN.

2.1. Infinite Pareto and Anonymity. Given x ∈ 2ω, let U(x) := {n ∈ ω : x(n) = 1} and
{nxk : k ≥ 1} enumerate the numbers in U(x). Define

o(x) := [nx1 , nx2) ∪ [nx3 , nx4) · · · [nx2j+1, n
x
2j+2) ∪ · · ·

e(x) := [nx2 , nx3) ∪ [nx4 , nx5) · · · [nx2j+2, n
x
2j+3) ∪ · · ·(1)

As usual we identify subsets of ω with their characteristic functions, so that we can write
o(x), e(x) ∈ 2ω.

Theorem 1. Let v denote a total SWR satisfying IP and AN on X = 2ω. Then there exists
a subset of X which is not MV-measurable.

Proof. Let Γ := {x ∈ 2ω : e(x) < o(x)}. We show Γ is not MV-measurable. Given any
p ∈ MV, let {nk : k ≥ 1} enumerate all natural numbers in S(p) ∪ U(p) (note that in the
enumeration of the nk’s we drop the index p for making the notation less cumbersome, since
the tree p we refer to is fixed). To prove our claim, we aim to find x, z ∈ [p] such that
x ∈ Γ⇔ z /∈ Γ. We pick x ∈ [p] such that for all nk ∈ S(p) ∪ U(p), x(nk) = 1, i.e. for every
k ≥ 1, nxk = nk. Let

{(
nmj

, nmj+1, nmj+2
)

: j ≥ 1
}
be an enumeration of all Mathias triples

in p. We need to consider three cases.
• Case e(x) < o(x): We remove nm1+1, nmj

, nmj+1, for all j > 1 from U(x) to obtain
z ∈ 2ω as follows:

z(n) :=
{
x(n) if n /∈

{
nm1+1, nmj

, nmj+1 : j > 1
}

0 otherwise.

1In sub-section 2.2, we are going to give a proof with Y = Z, but it will be clear that the argument can
be easily generalized in order to work for any set of utilities Y ⊆ R containing a subset with order type Z.



Note that z ∈ [p], since nm1+1, nmj
, nmj+1 are all in S(p). Let

O(m1) :=[n1, n2) ∪ [n3, n4) · · · [nm1−1, nm1),
E(m1) :=[n2, n3) ∪ [n4, n5) · · · [nm1 , nm1+1).

Observe that
- for all n ∈ O(m1), e(z)(n) = 0 < 1 = o(x)(n) and o(z)(n) = 1 > 0 = e(x)(n),
- for all n ∈ E(m1), e(z)(n) = 1 > 0 = o(x)(n) and o(z)(n) = 0 < 1 = e(x)(n),
- for all n ∈ ⋃

j>1
[nmj

, nmj+1), e(z)(n) = 1 > 0 = o(x)(n) and o(z)(n) = 0 < 1 =

e(x)(n), and
- for all remaining n ∈ ω, e(z)(n) = o(x)(n) and o(z)(n) = e(x)(n).

Let {k1, k2, · · · , kM} enumerate the elements in O(m1), and let {k1, · · · , kM} enumer-
ate the initial M elements of the infinite set ⋃

j>1
[nmj

, nmj+1). We permute e(z)(k1)

with e(z)(k1), e(z)(k2) with e(z)(k2), continuing likewise till e(z)(kM) with e(z)(kM)
to obtain eπ(z). Further, oπ(z) is obtained by carrying out identical permutation on
o(z). Observe that eπ(z) and oπ(z) are finite permutations of e(z) and o(z) respec-
tively. Then,

- for all n ∈ O(m1), eπ(z)(n) = 1 = o(x)(n) and oπ(z)(n) = 0 = e(x)(n),
- for all n ∈ E(m1), eπ(z)(n) = 1 > 0 = o(x)(n) and oπ(z)(n) = 0 < 1 = e(x)(n),
- for all n ∈ ⋃

j>1
[nmj

, nmj+1) \ {k1, · · · , kM}, eπ(z)(n) = 1 > 0 = o(x)(n) and

oπ(z)(n) = 0 < 1 = e(x)(n),
- for n ∈ {k1, · · · , kM}, eπ(z)(n) = 0 = o(x)(n) and oπ(z)(n) = 1 = e(x)(n), and
- for all remaining n ∈ ω, eπ(z)(n) = o(x)(n) and oπ(z)(n) = e(x)(n).

Observe that AN implies

(2) eπ(z) ∼ e(z) and oπ(z) ∼ o(z).

Further, applying IP, we get

(3) o(x) < eπ(z) and oπ(z) < e(x).

Combining (2) and (3) and transitivity, we get o(z) ∼ oπ(z) < e(x) < o(x) < eπ(z) ∼
e(z)→ o(z) < e(z), which implies z /∈ Γ.
• Case o(x) < e(x): the argument is similar to the above case and we just need to
arrange the details accordingly. We remove nm1 , nmj+1, nmj+2, for all j > 1 from
U(x) to obtain z ∈ 2ω as follows:

z(n) :=
{
x(n) if n /∈

{
nm1 , nmj+1, nmj+2 : j > 1

}
0 otherwise.

Let
O(m1) :=[n1, n2) ∪ [n3, n4) · · · [nm1−1, nm1),
E(m1) :=[n2, n3) ∪ [n4, n5) · · · [nm1−2, nm1−1).

(In case m1 = 2 put E(m1) = ∅.)
Then,
- for all n ∈ O(m1), e(z)(n) = 0 < 1 = o(x)(n) and o(z)(n) = 1 > 0 = e(x)(n),
- for all n ∈ E(m1), e(z)(n) = 1 > 0 = o(x)(n) and o(z)(n) = 0 < 1 = e(x)(n),



- for all n ∈ ⋃
j>1

[nmj+1, nmj+2), e(z)(n) = 0 < 1 = o(x)(n) and o(z)(n) = 1 > 0 =

e(x)(n), and
- for all remaining n ∈ ω, e(z)(n) = o(x)(n) and o(z)(n) = e(x)(n).

Let {k1, k2, · · · , kM} enumerate the elements in E(m1), and let {k1, · · · , kM} enumer-
ate the initial M elements of the infinite set ⋃

j>1
[nmj+1, nmj+2). We permute e(z)(k1)

with e(z)(k1), e(z)(k2) with e(z)(k2), continuing likewise till e(z)(kM) with e(z)(kM)
to obtain eπ(z). Further, oπ(z) is obtained by carrying out identical permutation on
o(z). Observe that eπ(z) and oπ(z) are finite permutations of e(z) and o(z) respec-
tively. Then,

- for all n ∈ E(m1), eπ(z)(n) = 0 = o(x)(n) and oπ(z)(n) = 1 = e(x)(n),
- for all n ∈ O(m1), eπ(z)(n) = 0 < 1 = o(x)(n) and oπ(z)(n) = 1 > 0 = e(x)(n),
- for all n ∈ ⋃

j>1
[nmj+1, nmj+2) \ {k1, · · · , kM}, eπ(z)(n) = 0 < 1 = o(x)(n) and

oπ(z)(n) = 1 > 0 = e(x)(n),
- for all n ∈ {k1, · · · , kM}, eπ(z)(n) = 1 = o(x)(n) and oπ(z)(n) = 0 = e(x)(n),
and

- for all remaining n ∈ ω, eπ(z)(n) = o(x)(n) and oπ(z)(n) = e(x)(n).
Observe that AN implies eπ(z) ∼ e(z) and oπ(z) ∼ o(z) and IP gives eπ(z) <

o(x) and e(x) < oπ(z), and combining them we obtain e(z) ∼ eπ(z) < o(x) < e(x) <
oπ(z) ∼ o(z)→ e(z) < o(z), which implies z ∈ Γ.
• Case e(x) ∼ o(x): We remove nmj

, nmj+1, for all j > 1 from U(x) to obtain z ∈ 2ω
as follows:

z(n) =
{
x(n) if n /∈

{
nmj

, nmj+1 : j > 1
}

0 otherwise.
By construction we obtain o(z)(n) ≥ o(x)(n) and e(z)(n) ≤ e(x)(n) for all n ∈ ω.
Further, for all n ∈ ⋃

j∈ω

[
nmj

, nmj+1
)
, o(z)(n) = 1 > 0 = o(x)(n) and e(z)(n) =

0 < 1 = e(x)(n). Hence, by IP, we get o(x) < o(z) and e(z) < e(x), and so using
transitivity we get e(z) < o(z), which implies z ∈ Γ.

�

2.2. Weak Pareto and Anonymity. Given x ∈ 2ω, let U(x) := {n ∈ ω : x(n) = 1} and
{nxk : k ∈ ω} enumerate U(x). As in the case of Theorem 1, define o(x) and e(x); next use
the following notation:

• let {lk : k ≥ 1} enumerate all elements in o(x) and {uk : k ≥ 1} enumerate all
elements in ω \ o(x);
• let {l′k : k ≥ 1} enumerate all elements in e(x) and {u′k : k ≥ 1} enumerate all
elements in ω \ e(x);

Note that for every k ≥ 1, one has l′k = un1+(k−1) and lk = u′n1+(k−1). Next we define the
following pair of sequences o(x), e(x) in Zω:

(4) o(x)(n) =
{
k if n = lk, for some k ≥ 1
−k if n = uk, for some k ≥ 1,

(5) e(x)(n) =
{
k if n = l′k, for some k ≥ 1
−k if n = u′k, for some k ≥ 1.



Theorem 2. Let v denote a total SWR satisfying WP and AN on X = Zω. Then there
exists a subset of 2ω which is not MV-measurable.2

Proof. The structure of the proof is similar to Theorem 1, but the technical details are
different. Let v be a total SWR satisfying WP and AN, and put Γ := {x ∈ 2ω : e(x) < o(x)}.
Given any p ∈MV, let {nk : k ≥ 1} enumerate all natural numbers in S(p) ∪ U(p). We aim
to find x, z ∈ [p] such that x ∈ Γ ⇔ z /∈ Γ. We proceed as follows: pick x ∈ [p] such that
for all nk ∈ S(p)∪U(p), x(nk) = 1. Let

{(
nmj

, nmj+1, nmj+2
)

: j ∈ ω
}
be an enumeration of

all Mathias triples in p. We need to consider three cases.
• Case e(x) < o(x): We remove nm1+1, nmj

, nmj+1, for all j > 1 from U(x) to obtain
z ∈ 2ω as follows:

z(n) =
{
x(n) if n /∈

{
nm1+1, nmj

, nmj+1 : j > 1
}

0 otherwise.
Let

O(m1) :=[n1, n2) ∪ [n3, n4) · · · [nm1−1, nm1),
E(m1) :=[n2, n3) ∪ [n4, n5) · · · [nm1 , nm1+1).

Then,
- for all n ∈ O(m1), e(z)(n) < 0 < o(x)(n) and o(z)(n) > 0 > e(x)(n),
- for all n ∈ [0, n1), 0 > e(z)(n) = o(x)(n) and 0 > o(z)(n) = e(x)(n),
- for all n ∈ E(m1), o(x)(n) < 0 < e(z)(n) and o(z)(n) < 0 < e(x)(n),
- for all n ≥ nm1+1 if 0 > e(z)(n) then 0 > o(x)(n) holds. Also if o(x)(n) > 0 then
e(z)(n) > 0. Similarly, if 0 > e(x)(n) then 0 > o(z)(n) holds. Also if o(z)(n) > 0
then e(x)(n) > 0.

- For all n ∈ ⋃
j>1

[
nmj

, nmj+1
)
, o(x)(n) < 0 < e(z)(n) and o(z)(n) < 0 < e(x)(n).

These are infinitely many elements of the sequence.

Claim 1. There exists N ∈ ω such that e(x)(n) > o(z)(n) holds for all n > N .

Proof. For all n < nm1+1, (a) e(x)(n) contains positive elements at coordinates in
E(m1) and negative elements at coordinates in O(m1)∪ [0, n1); and (b) o(z)(n) con-
tains positive elements at coordinates in O(m1) and negative elements at coordinates
in E(m1) ∪ [0, n1). There are two cases.
(1) |O(m1)| < |E(m1)|: Among coordinates n < nm1+1,

– fewer negative integers have been assigned in e(x)(n) as compared to
o(z)(n). Then 0 > e(x)(nm1+1) > o(z)(nm1+1) and for all subsequent co-
ordinates n with both e(x)(n) and o(z)(n) being negative, 0 > e(x)(n) >
o(z)(n) holds.

– fewer positive integers have been assigned in o(z)(n) as compared to e(x)(n).
Then e(x)(nm1+2) > o(z)(nm1+2) > 0 and for all subsequent coordinates
n with both e(x)(n) and o(z)(n) being positive, e(x)(n) > o(z)(n) > 0
holds.

We take N = nm1+1 in this case.

2It is clear from the proof that one could get the same result in an even slightly more general setting,
namely with Y any set of utilities with order type Z.



(2) |O(m1)| ≥ |E(m1)|: Among the coordinates [nmj+1, nmj+1) for all j ∈ ω, e(x)(n)
and o(z)(n) contain equally many elements of same sign. Further for the coor-
dinates in [nmj

, nmj+1), o(z)(n) is negative but e(x)(n) is not. Thus for some
finite J ∈ ω,

|O(m1)| < |E(m1)|+

∣∣∣∣∣∣
⋃

j∈{2,··· ,J}

[
nmj

, nmj+1
)∣∣∣∣∣∣

will be true. In this case, we can apply argument of case (i) above for nmJ +1
and therefore obtain N = nmJ +1.

Thus we have shown that for all n > N , if e(x)(n) and o(z)(n) share the same sign
then e(x)(n) > o(z)(n). The remaining situation is e(x)(n) > 0 > o(z)(n). This
completes the proof. �

Claim 2. There exists a finite permutation oπ(z) of o(z) such that e(x)(n) > oπ(z)(n)
holds for all n ∈ ω.

Proof. In claim 1, it has been shown that for all n > N e(x)(n) > o(z)(n). Let
K := {k0, k1, · · · , kN} be an increasing enumeration of all elements from the set⋃
j>J

[
nmj

, nmj+1
)
. We permute o(z)(0) and o(z)(k0); o(z)(1) and o(z)(k1) and so

on till o(z)(N) and o(z)(kN) to obtain oπ(z). Hence, oπ(z) is obtained via a finite
permutation of o(z) . Observe that if 0 > e(x)(n) ≥ o(z)(n), then

e(x)(n) > o(z)(kn) = oπ(z)(n), and e(x)(kn) > 0 > o(z)(n) = oπ(z)(kn).

If 0 > o(z)(n) ≥ e(x)(n), then

e(x)(n) > o(z)(kn) = oπ(z)(n), and e(x)(kn) > 0 > o(z)(n) = oπ(z)(kn).

If e(x)(n) < 0 < o(z)(n), then

0 > e(x)(n) > o(z)(kn) = oπ(z)(n), and e(x)(kn) > o(z)(n) = oπ(z)(kn) > 0.

If e(x)(n) > o(z)(n) > 0, then

e(x)(n) > 0 > o(z)(kn) = oπ(z)(n), and e(x)(kn) > o(z)(n) = oπ(z)(kn) > 0.

�

Applying Claims 1 and 2, we have obtained oπ(z) such that e(x)(n) > oπ(z)(n)
for all n ∈ ω. AN implies o(z) ∼ oπ(z), and by WP we get e(x) = oπ(z). By also
applying transitivity, we thus obtain, e(x) = o(z).

Notice that arguments of claims 1 and 2 could also be applied to the pair of
sequences e(z) and o(x). Thus we are able to obtain oπ(x) such that applying AN we
get o(x) ∼ oπ(x), by WP we get oπ(x) < e(z), and finally, by transitivity it follows
o(x) < e(z). Combining all together we obtain:

o(z) < e(x) < o(x) < e(z)→ o(z) < e(z),

which implies z /∈ Γ.



• Case o(x) < e(x): Similar to the previous case, only with some different technical
details. We remove nm1 , nmj+1, nmj+2, for all j > 1 from U(x) to obtain z ∈ 2ω as
follows:

z(n) =
{
x(n) if n /∈

{
nm1 , nmj+1, nmj+2 : j > 1

}
0 otherwise.

Let
O(m1) :=[n1, n2) ∪ [n3, n4) · · · [nm1−1, nm1),
E(m1) :=[n2, n3) ∪ [n4, n5) · · · [nm1−2, nm1−1).

(In case m1 = 2 put E(m1) = ∅.)
Then,
- for all n ∈ O(m1), e(z)(n) < 0 < o(x)(n) and o(z)(n) > 0 > e(x)(n),
- for all n ∈ [1, n1), 0 > e(z)(n) = o(x)(n) and 0 > o(z)(n) = e(x)(n),
- for all n ∈ E(m1), o(x)(n) < 0 < e(z)(n) and o(z)(n) < 0 < e(x)(n),
- for all n ≥ nm1+1 if 0 > o(x)(n) then 0 > e(z)(n) holds. Also if e(z)(n) > 0
then o(x)(n) > 0. Similarly, if 0 > o(z)(n) then 0 > e(x)(n) holds. Also if
e(x)(n) > 0 then o(z)(n) > 0.

- For all n ∈ ⋃
j>1

[
nmj+1, nmj+2

)
, e(z)(n) < 0 < o(x)(n) and e(x)(n) < 0 < o(z)(n).

These are infinitely many elements of the sequence.
Applying Claims 1 and 2, we are able to obtain eπ(z) and oπ(z) such that

o(x)(n) > eπ(z)(n), and oπ(z)(n) > e(x)(n) for all n ∈ ω.

AN implies o(z) ∼ oπ(z), and e(z) ∼ eπ(z), and byWP we get eπ(z) < o(x), and e(x) <
oπ(z). Hence, by transitivity, it follows:

e(z) < o(x), and e(x) < o(z),

which leads to z ∈ Γ.
• Case e(x) ∼ o(x): We remove nmj

, nmj+1, for all j > 1 from U(x) to obtain z ∈ 2ω
as follows:

z(n) =
{
x(n) if n /∈

{
nmj

, nmj+1 : j > 1
}

0 otherwise.
By construction we obtain o(z)(n) ≥ o(x)(n) and e(z)(n) ≤ e(x)(n) for all n ∈ ω.
Further, for all n > m1, o(z)(n) > o(x)(n) and e(z)(n) < e(x)(n). Applying a similar
argument as in the proof of Claim 2, by permuting finitely many elements, we are
able to obtain eπ(z) and oπ(z) such that

o(x)(n) < oπ(z)(n), and eπ(z)(n) < e(x)(n), for all n ∈ ω.

Again, AN implies o(z) ∼ oπ(z), and e(z) ∼ eπ(z), WP implies o(x) < oπ(z), and eπ(z) <
e(x), and therefore, by transitivity, it follows:

e(z) < e(x), and o(x) < o(z),

which leads to z ∈ Γ.
�



3. Concluding remarks

We conclude with some comments on the nature of equitable total SWRs. The non-
constructive objects which have played a role so far in the context of SWRs on infinite
utility streams are: free ultrafilters, non-Lebesgue measurable sets, non-Ramsey sets, non-
Baire sets, and non-Mathias-Silver measurable sets (the latter being particular type of non-
Baire sets). In Table 1 below, we summarize the non-constructive objects which emerge as
a consequence of the existence of total social welfare relations satisfying anonymity and the
Pareto principle mentioned in column (1). These objects could be distinguished on the basis

Table 1.

(1) (2) (3)
Axiom Y Corresponding non-constructive set

Strong Pareto |Y | ≥ 2 Non-Lebesgue (Zame (2007)), Non-Baire (Laguzzi (2020))
Infinite Pareto |Y | ≥ 2 Non-Ramsey (Lauwers (2010)), Non-Mathias-Silver (Theorem 1)
Weak Pareto Y = [0, 1] Non-Lebesgue (Zame (2007))
Weak Pareto Y = Z Non-Ramsey (Dubey (2011)), Non-Mathias-Silver (Theorem 2)

of the corresponding fragments of AC needed for existence.3 For instance, let

U := There exists a free ultrafilter on ω.
NL := There exists a non-Lebesgue measurable set.

On the one hand, well-known Vitali’s result shows that U ⇒ NL, but on the other hand,
as a consequence of Shelah (1985), one has NL 6⇒ U. Hence U corresponds to a strictly
larger/stronger fragment of AC than NL. The following diagram shows such fragments of
AC when combining AN and IP with set of utilities Y = {0, 1}; moving bottom-up means
moving from weaker to stronger fragment of AC.

ANIP

U

NRNB

NB: there exists a non-Baire set
NR: there exists a non-Ramsey set

ANIP: there exists a total SWR satisfying AN and IP
U: there exists a free ultrafilter on ω

Note that we could get other similar diagrams when dealing with SWRs satisfying other
combinations of efficiency and equity principles (even with larger utility domains), giving
rise to other cases worthy of studying.

3Interested reader can consult the following selected list of papers: Brendle and Löwe (1999), Ikegami
(2010), Khomskii (2012), and Laguzzi (2014).
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