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We present some results about the burgeoning research area concerning set theory of the “κ-reals”. We focus
on some notions of measurability coming from generalizations of Silver and Miller trees. We present analogies
and mostly differences from the classical setting.
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1 Introduction and basic definitions

The study of the generalized version of the Baire space κκ and Cantor space 2κ , for κ uncountable regular cardinal,
is a burgeoning research area, which intersects both the generalized descriptive set theory and the set theory of
the “κ-reals”, where we refer to the elements of κκ and 2κ as κ-reals.

Basic Notation.

The dramatis personae of our work are the so-called tree-like forcings. A tree T is a subset of either 2<κ or
κ<κ , closed under initial segments. stem(T ) denotes the longest node of T compatible with all the other nodes
of T ; succ(t, T ) := {ξ < κ : t�ξ ∈ T }; split(T ) is the set of splitting nodes of T ; we put ht(T ) := sup{α : ∃t ∈
T (|t | = α)}, while term(T ) denotes the terminal nodes of T . For α < κ , T �α := {t ∈ T : |t | < α}. A branch
through T is the limit of an increasing cofinal sequence {tξ : ξ < κ} of nodes in T , and [T ] will denote the set
of all branches of T . Moreover, we shall assume κ<κ = κ and that κ is regular. Note that we shall use the usual
letters for denoting forcing notions like Sacks, Silver, Miller and Cohen, omitting the symbol κ , as it is clear that,
in this paper, we shall always deal with some generalized version. Our attention will be particularly focused on
the following types of trees:

1. a tree T ⊆ 2<κ is called a Sacks tree iff ∀t ∈ T ∃t ′ ∈ T (t ⊆ t ′ ∧ t ′ ∈ split(T )) (we write T ∈ S);
2. a tree T ⊆ 2<κ is called a club Sacks tree iff it is Sacks and for every x ∈ [S] we have {α < κ : x�α ∈

split(T )} is closed unbounded (we write T ∈ Sclub); analogously we define Sstat by requiring {α < κ :
x�α ∈ split(T )} to be stationary;

3. a tree T ⊆ 2<κ is called a Silver tree iff it is Sacks and moreover for every s, t ∈ T such that |s| = |t | one
has s�i ⇔ t�i , for i ∈ {0, 1} (we write T ∈ V);

4. a tree T ⊆ 2<κ is called a club Silver tree iff it is Silver and lev(T ) := {α < κ : ∃t ∈ T (t ∈ split(T ))} is
closed unbounded (we write T ∈ Vclub); analogously for Vstat;

5. a tree T ⊆ κ<κ is called a Miller tree iff ∀t ∈ T ∃t ′ ∈ T (t ⊆ t ′ ∧ t ′ ∈ split(T ) ∧ |succ(t, T )| = κ) (we
write T ∈ M);

6. a tree T ⊆ κ<κ is called a club Miller tree (T ∈ Mclub) iff it is Miller and the following hold:
(a) for every x ∈ [T ] one has {α < κ : x�α ∈ split(T )} is closed unbounded,
(b) for every t ∈ split(T ) one has {α < κ : t�α ∈ T } is closed unbounded.

7. a tree T ⊆ κ<κ is called a full Miller tree (T ∈ Mfull) iff it is Miller and for every t ∈ split(T ) for every
α < κ , one has t�α ∈ T .
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The associated forcing notions are ordered by inclusion. We remark that a stronger version of Mclub has been
introduced by Friedman and Zdomskyy in [2], where they proved that such a version, combined with club Sacks,
preserves κ+ via <κ-support iteration.

For our tree-forcings P, one can introduce a corresponding notion of regularity as follows.

Definition 1.1 A set X of κ-reals is said to be P-measurable iff

∀T ∈ P∃T ′ ∈ P, T ′ ⊆ T ([T ′] ⊆ X ∨ [T ′] ∩ X = ∅);

it is said to be weakly-P-measurable iff

∃T ∈ P([T ] ⊆ X ∨ [T ] ∩ X = ∅).

When P is one of our tree forcings, we may also say “Sacks measurable”, “Miller measurable” and so on.

In [3], the authors show that the following generalization from the classical setting holds true: if � is a family
of sets of κ-reals closed under intersection with closed sets and continuous pre-images, then

∀X ∈ �(X is weakly P-measurable) ⇔ ∀X ∈ �(X is P-measurable).

Hence, when one investigates the validity of P-measurability for all sets in �, it is actually sufficient to investigate
the weak-P-measurability on �.

There are essentially two main reasons for which the investigation of regularity properties in κκ is interesting
and more involved than the classical setting:

1. the club filter is a �1
1 set without the Baire property, as was proved by Halko and Shelah in [4];

2. there is not an analogue of the factoring lemma for the Levy collapse Coll(κ,< λ), for κ > ω and λ

inaccessible. More precisely, there are x ∈ κκ such that Coll(κ,< λ)/x is not equivalent to Coll(κ,< λ).

We shall call such reals bad, while on the opposite side, the good reals will be those having quotients equivalent
to the Levy collapse.

Actually, 2. is true even for the κ-Cohen forcing C, as it is well-know that one can pick a Cohen κ-real x and
then a forcing P shooting a club through the complement of x , and this two step iteration is equivalent to C.
Hence, both C and Coll(κ,< λ) are not strongly homogeneous, unlike their counterparts in the standard setting.

Nevertheless, even if one cannot hope for a full factoring lemma, in [10], Philipp Schlicht has shown that one
can recover a partial version. Indeed, he has proven that when forcing with Coll(κ,< λ), one can obtain perfectly
many good reals, in a sense, in order to use the usual Solovay’s argument and obtain that all Onκ -definable subsets
of 2κ have the perfect set property. Inspired by his method, we prove some variants that will allow us to get the
following two results:

for κ inaccessible, a κ+-iteration of C with <κ-support forces all Onκ -definable sets (∗)
to be Vstat-measurable;

for λ inaccessible, Coll(κ,< λ) forces all Onκ -definable sets to be Mfull-measurable; (∗∗)

Furthermore, we shall also prove that (∗) is no longer true when one replaces Vstat with Vclub. We conclude
this introductory section with a schema of the paper: in § 2 we show some interesting construction involving
Sacks trees and Miller trees, marking some difference from the standard setting; in § 3 we present some results
concerning adding perfect trees of Cohen branches; in § 4 we build the model to get all Onκ -definable subsets
of 2κ to be Vstat-measurable; in § 5, we prove that Coll(κ,< λ) forces all Onκ -definable subsets of κκ to be
Mfull-measurable; a concluding section is finally devoted to discussing some further potential developments.

2 Some basic differences from the classical setting

This section may be read independently from the rest of the paper. It is devoted to analyzing some basic differences
from the standard setting. Throughout this section, we assume that κ is a regular successor. Let 	 := {λα : α < κ}
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be such that λ0 = 0 and {λα : 1 ≤ α < κ} enumerates the limit ordinals <κ such that 2λα = κ . For t ∈ 2λα and
α < κ , let π(t, α + 1) := {t ′ ∈ 2λα+1 : t ′ ⊇ t}. Furthermore, fix a well-ordering W (t, α + 1) = {

tα+1
ξ : ξ < κ

}
of

π(t, α + 1).
In the standard case when κ = ω, we know that 2ω and ωω are not homeomorphic, even if they are connected

via a Borel isomorphism. The following simple remark shows that the situation is different, when κ > ω is a
successor. The following result was proved in [5]. We give a sketch of the proof, since the construction is needed
later.

We remark that the spaces 2κ and κκ are homeomorphic. Moreover, there are many such homeomorphisms.
Indeed, let f : κ<κ → 2<κ be defined recursively as follows:

(a) f (∅) = ∅,
(b) f (〈ξ 〉) is the ξ th element of the well-ordering W (∅, 1),
(c) if t ∈ κα and ξ < κ , f (t�ξ) is the ξ th element in the well-ordering W ( f (t), α + 1),
(d) given {tα : α < γ } increasing sequence, γ limit ordinal, put f (limα<γ tα) = limα<γ f (tα).

Notice that the range of f is not 2<κ , but it is a strict subset of it, namely
⋃{t ∈ 2λα : λα ∈ 	}. This f provides

a bijection h : κκ → 2κ in the natural way, that is h(x) = limα<κ f (x�α), for every x ∈ κκ . It easily follows from
the definition that h is a homeomorphism.

The homeomorphism obviously depends on the well-orderings of W (t, α), and so it is far from being uniquely
determined. We now want to use these homeomorphisms between κκ and 2κ to exhibit some particular situations
which do not occur in the standard setting.

Fact 2.1 For every club Miller tree T ⊆ κ<κ with the property that for every t ∈ T , |{ξ : t�ξ /∈ T }| = κ , there
exists a homeomorphism h such that h”[T ] does not contain the branches of a club Sacks tree.

P r o o f . Let T ⊆ κ<κ be a club Miller tree. Instead of h, we actually define the function f : κ<κ → 2<κ ,
from which we shall naturally obtain the desired h. For every club splitting node t ∈ T we define f satisfying the
following requirement: let Ct ⊆ κ denote the club set of successors of t , then ξ ∈ Ct implies f (t�ξ) ⊇ f (t)�1.
It is then clear that, for every limit ordinal α and every t ∈ f ”T with length λα , we get that f (t) cannot be a
splitting node. Hence, f ”T cannot contain a club Sacks subtree. �

Lemma 2.2 There exist a homeomorphism h : κκ → 2κ and Y ⊆ κκ such that Y is weakly club Miller
measurable but h”Y is not weakly club Sacks measurable.

P r o o f . Consider f , h and T as in Fact 2.1. Note that, for every club Sacks tree S, [S]\h”[T ] has cardinality
2κ . This follows easily from Fact 2.1, since there is α ∈ κ and t ∈ 2λα such that t�0 ∈ S ∧ f −1(t�0) /∈ T (actually
there are cofinally many such α’s).

Let {Sξ : ξ < 2κ} be an enumeration of all club Sacks trees. Now we construct {Yξ : ξ < 2κ} and {Zξ : ξ < 2κ}
recursively as follows:

Step −1: Y0 = [T ] and Z0 = ∅;
Step ξ successor or ξ = 0: pick yξ ∈ h−1[Sξ ]\

⋃
ι≤ξ Yι and put Yξ+1 = Yξ ∪ {yξ }. Then pick zξ ∈

h−1[Sξ ]\
⋃

ι≤ξ Z ι such that zξ /∈ Yξ+1, and put Zξ+1 = Zξ ∪ {zξ }. Note that the choice of yξ can be done,
since by Fact 2.1 any club Sacks set contains 2κ many branches which are not in h”[T ].

Step ξ limit: put Yξ = ⋃
ι<ξ Yι and Zξ = ⋃

ι<ξ Z ι.

Finally put Y = ⋃
ξ<2κ Yξ and Z = ⋃

ξ<2κ Zξ . Then for all club Sacks tree S both h”Y ∩ [S] �= ∅ and [S] � h”Y
(the latter because Z ∩ Y = ∅.) �

On the opposite side, we have the following.

Lemma 2.3 Assume f : κ<κ → 2<κ is a map as above and satisfying the following further property: for every
α < κ and every t ∈ 2λα ,

f −1{t ′ ∈ 2λα+1 : t�0 ⊂ t ′}, f −1{t ′ ∈ 2λα+1 : t�1 ⊂ t ′} are stationary. (†)
Then for every club Miller tree T we have that f ”T contains a club Sacks tree.
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P r o o f . Indeed, we are going to prove the following stronger conclusion: let S∗,club be the version of club
Sacks forcing obtained by replacing 2<κ with κ<κ , i.e., S∗,club consists of 2-branching trees in κ<κ with club
splitting. Then we are going to prove that for every T ∈ Mclub there exists T0 ⊂ T in S∗,club and S ∈ Sclub such
that f ”T0 = S. We recursively construct T0 as follows.

Step 0: Let t∅ = stem(T ) and put α∅ = |t∅|. Then pick ξ0, ξ1 ∈ succ(t∅) such that f (t∅�ξ0) ⊃ f (t∅)�0 and
f (t∅�ξ1) ⊃ f (t∅)�1; note that this can be done by (†), since succ(t∅, T ) is club. Further, for i ∈ {0, 1}, let t〈i〉
be the least splitting node in Tt�

∅
i := {s ∈ T : s ⊆ t∅�i ∨ s ⊇ t∅�i}.

Successor step: Assume the construction done for all σ ∈ 2β . For every σ ∈ 2β , we use the same idea as step
0, and we pick ξ0, ξ1 ∈ succ(tσ ) such that, for i ∈ {0, 1}, f (tσ �ξi ) ⊃ f (tσ )�i . Analogously, tσ�i is the least
splitting node in Tt�

σ i .
Limit step: For σ ∈ 2δ such that, for all β < δ, tσ�β is already constructed, put tσ := ⋃

β<δ tσ�β .

Finally let T0 be the downward closure of
⋃

σ∈2<κ tσ and S := f ”T0. By construction, T0 and S have the required
properties. �

In a sense, the situation occurring in Lemma 2.2 is very unpleasant, as we would like to generally view Miller
trees as particular kind of Sacks trees, and moreover that this fact is preserved under homeomorphism. Hence,
Lemmas 2.2 and 2.3 may be understood as a way of separating good homeomorphisms from bad ones.

3 Generic trees of Cohen branches

We present some results about adding certain types of generic perfect trees. In §§ 4 and 5, it will be crucial to use
specific kinds of perfect trees such that each of their branches is Cohen over the ground model. We refer to such
generic trees by saying “perfect trees of Cohen branches”.

Lemma 3.1 Let κ be inaccessible. Let VT := {p : ∃T ∈ V∃α ∈ κ(p = T �α)}, ordered by end-extension, i.e.,
p′ ≤ p iff p ⊆ p′ ∧ ∀t ∈ p′\p∃s ∈ term(p)(s ⊆ t). Let TG := ⋃{p : p ∈ G}, with G being VT-generic filter
over the ground model N. Then

N[G] |= TG ∈ V ∧ ∀x ∈ [TG ](x is Cohen over N) ∧ lev(TG) is stationary and co-stationary,

where lev(TG) denotes the set of splitting levels of TG. Moreover, VT is a forcing of size κ and is < κ-closed. So
it is actually equivalent to κ-Cohen forcing.

P r o o f . Fix p ∈ VT and D ⊆ C open dense and let {tα : α < δ < κ}, enumerate all terminal nodes of p
(without loss of generality, assume δ is a limit ordinal). We use the following notation: for every s, t ∈ 2<κ , put

t ⊕ s := {t ′ ∈ 2<κ : ∀α < |t |(t ′(α) = t(α)) ∧ ∀α ≥ |t |(t ′(α) = s(α))}.
Then consider the following recursive construction:

(a) pick s0 ⊇ t0 such that s0 ∈ D;
(b) for α + 1, pick sα+1 ⊇ tα+1 ⊕ sα such that sα+1 ∈ D;
(c) for α limit, put s ′

α = ⋃
ξ<α sξ and pick sα ⊇ tα ⊕ s ′

α such that sα ∈ D;
(d) once the procedure has been done for every α < δ, we put sδ := ⋃

α<δ t0 ⊕ sα and then t ′
α := tα ⊕ sδ .

Note that to make sure that tα ⊕ sδ ∈ 2<κ we need to use the assumption that κ is inaccessible. Finally, let p′

be the downward closure of
⋃

α<δ t ′
α . By construction, p′ ∈ VT, p′ ≤ p and for every terminal node t ∈ p′, we

get t ∈ D. Hence p′ � ∀x ∈ [TG ](Hx ∩ D �= ∅), where Hx := {s ∈ C : s ⊂ x}.
We now want to further extend p′ in order to catch the second property as well, i.e., lev(TG) is both stationary

and co-stationary. So fix Ċ name for a club of κ . Build sequences {qn : n ∈ ω} and {ξn : n ∈ ω} such that:
q0 = p′, and qn+1 ≤ qn such that qn+1 � ξn ∈ Ċ and ξn > ht(qn) and ht(qn+1) > ξn . Finally put ξω = limn<ω ξn ,
qω := ⋃

n∈ω qn , and then

p∗ := qω ∪
⋃

{t�i : t ∈ term(qω) ∧ i ∈ {0, 1}}.
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Hence p∗ � ∀n(ξn ∈ Ċ), and then p∗ � ξω ∈ Ċ . But ξω = ht(qω), since the ξn’s and the |ht(qn)|’s are mutually
cofinal, and hence p∗ � ξω ∈ lev(TG) ∩ Ċ . This shows that lev(TG) is stationary. For proving that it is co-stationary
as well, we can further extend p∗, by using the same procedure, in order to find {q ′

n : n ∈ ω} and {ξ ′
n : n ∈ ω} as

above and then p∗∗ ≤ q ′
ω such that p∗∗ := q ′

ω ∪ ⋃{t�0 : t ∈ term(q ′
ω)}. Hence

p∗∗ � ξω ∈ lev(TG) ∩ Ċ ∧ ξ ′
ω /∈ lev(TG) ∩ Ċ,

which completes the proof. �
About generic Miller trees of Cohen branches the situation is very different, since the above argument does not

seem to work. The next method shows a simple different way to add a tree T ∈ Mfull of Cohen branches, which
we shall use in § 5. On the opposite side, Lemma 3.4 marks a necessary condition for adding a tree T ∈ Mclub of
Cohen branches, generalizing some results obtained by Spinas and Brendle in the classical setting (cf. [11], [1]).

We use the following notation: given a tree T ⊆ κ<κ , splitα(T ) is recursively defined by split0(T ) = {stem(T )}
and t ∈ splitα(T ) iff t ∈ split(T ) and for every β < α there exists tβ ⊂ t such that tβ ∈ splitβ(T ). Furthermore,
T [α] := {s ∈ T : ∃t ∈ splitα(T )∃i < κ(t�i ∈ T ∧ s ⊆ t�i)}.

Lemma 3.2 Define the forcing MT := {p : ∃T ∈ Mfull∃α < κ(p � T [α])}, ordered by end-extension. Then
MT adds a full Miller tree of Cohen branches.

P r o o f . Let D ⊆ C be open dense and p ∈ MT. Pick ϕ : term(p) → κ<κ such that ϕ(t) ∈ D and ϕ(t) ⊇ t ,
and then define p′ ≤ p as the downward closure of

⋃{ϕ(t)�ξ : t ∈ term(p) ∧ ξ ∈ κ}. Then p′ � ∀x ∈ [TG ](Hx ∩
D �= ∅), where Hx := {s ∈ C : s ⊂ x}. �

Remark 3.3 Note that in the proofs of Lemmas 3.1 and 3.2, we have proved that one can add a certain
type of generic tree whose branches are Cohen in the extension N[G], where G is VT- and MT-generic over
N, respectively. In the application that we shall see in the next sections, we actually need something stronger,
i.e., that all branches of the generic tree have to be Cohen in any extension M ⊇ N[G] via a <κ-closed forcing.
But, this is actually implicit in our proof. Indeed, in Lemma 3.2 we have proven that, for every D ⊆ C open dense
in N,

N[G] |= ϕ :≡ ∃F ⊆ κ<κ∀x ∈ κκ(x ∈ [TG ] ⇒ ∃t ∈ F(t ⊂ x ∧ t ∈ D)),

and analogously for Lemma 3.1 with 2κ in place of κκ . Note that this formula ϕ is �1
2(κ

κ). Hence, it is upward

absolute between N[G] and any extension M via <κ-closed forcing (this to ensure (κ<κ)M = (κ<κ)N[G] and
then �1

1-absoluteness). Hence, we get M |= ϕ, which means M |= ∀x ∈ [TG ](Hx ∩ D �= ∅). Since D ∈ N was

arbitrarily chosen, we have obtained: for every D ⊆ C ∩ N, for every x ∈ [TG ]M, one has Hx ∩ D �= ∅. Hence,
M |= ∀x ∈ [TG ](x is Cohen over N).

Lemma 3.4 Let M be a ZFC-model extending the ground model N . If for all x ∈ κκ ∩ M there exists y ∈ κκ ∩ N
such that ∀α < κ∃β ≥ α(x(β) < y(β)), then in M there is no club Miller tree of Cohen branches. In other words,
If one adds a club Miller tree of Cohen branches, then one necessarily adds dominating κ-reals over the ground
model.

P r o o f . Let T ∈ Mclub and t ∈ split(T ). Define

ht(α) := min{|t ′| : ∃ξ ≥ α(t ′ ∈ split(T ) ∧ t ′ ⊇ t�ξ)} + 1.

Further, given z ∈ κ↑κ ∩ N, define B(z) := {x ∈ κκ : ∀μ∀α ≤ μ(z(x(α)) ≥ μ)}.
Claim 3.5 B(z) is closed nowhere dense.

P r o o f . To see that B(z) is nowhere dense, fix s ∈ κ<κ . Then let s ′ = s�0β , where 0β is the sequence of 0s
of length β, and β is sufficiently large that |s ′| > sup

{
z(s(α)) : α < |s|}. Hence [s ′] ∩ B(z) = ∅. �

Let T ∈ Mclub ∩ M be a tree of Cohen branches over N. Pick h ∈ κκ such that ∀t ∈ split(T )∃α < κ∀ξ ≥
α(ht(ξ) < h(ξ)). To show that h is dominating over N, we argue by contradiction; pick z ∈ κ↑κ ∩ N which is
not eventually dominated by h, and with the further property that z(0) > |stem(T )|. Let us construct {tξ : ξ < κ}
recursively as follows: We let t0 = stem(T ) and for λ limit ordinal let tλ = ⋃

ξ<λ tξ . Now assume that tξ is already
defined. By the choice of z, there exists β ∈ κ such that h(β) < z(β). We distinguish two cases:
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Case 1: if tξ �β ∈ T , then simply put tξ+1 be the least splitting node extending tξ �β;
Case 2: if tξ �β /∈ T , then let γξ := min{γ : γ > β ∧ tξ �γ ∈ T }. By construction, h(γξ ) = h(β) and so h(γξ ) <

z(β) ≤ z(γξ ), since z is increasing. Then let tξ+1 be the least splitting node of T extending tξ �γξ .

Note that when ξ is limit, by recursive construction, tξ ∈ split(T ), as tξ is a limit of splitting nodes in T . Hence
the construction works even for ξ successor of a limit ordinal. Finally let x = ⋃

ξ<κ tξ . It is left to show that
x ∈ [T ] ∩ B(z), which will give us x ∈ [T ] not Cohen over N, since B(z) ∈ N is nowhere dense. Clearly x ∈ [T ],
since the construction explicitely gives us cofinally many α < κ such that x�α ∈ T . To show that x ∈ B(z), we
argue as follows: for every α < κ , pick the least ξ < κ such that α < |tξ |. By induction over ξ < κ:

(a) ξ = 0: for every α < |stem(T )|, we have z(x(α)) > |stem(T )|;
(b) ξ limit ordinal: trivial;
(c) ξ successor: if α < |tξ | use inductive hypothesis. If |tξ | ≤ α < |tξ+1|, then x(|tξ |) = tξ+1(|tξ |) = γξ ,

and so by choice of γξ , it follows that for every α < |tξ+1|, z(x(α)) ≥ z(γξ ) > |tξ+1|, since z is
increasing. �

Corollary 3.6 The forcing C does not add a generic T ∈ Mclub of Cohen branches.

4 Stationary-Silver vs club-Silver

Silver forcing may be introduced by using partial functions f : κ → 2, ordered by extension; simply identify
such an f with the tree T f := {x ∈ 2κ : ∀α ∈ dom( f )( f (α) = x(α))}. We shall use T and fT interchangeably,
depending on the situation. Throughout this section, T f will denote the tree associated with a given f , and vice
versa, fT will denote the partial function associated with a given T . Note that dom( f ) = κ\lev(TG).

In this section we want to investigate the family of Vclub-measurable and Vstat-measurable sets.

Lemma 4.1 There exists a �1
1 set which is not Vclub-measurable (viz. the club filter CUB).

Lemma 4.2 Assume κ be inaccessible. Let Cκ+ be a κ+-iteration of κ-Cohen forcing with < κ support, and
let G be the Cκ+ -generic filter over N. Then

N[G] |= “all Onκ -definable sets in 2κ are Vstat-measurable.”

We shall abuse notation by saying that “x ∈ 2κ is in CUB”, instead of the more correct “{α < κ : x(α) = 1} is
in CUB”.

We start with the proof of the easier of the two lemmas.

P r o o f o f L e m m a 4.1 We shall show that for every T ∈ Vclub,

∃x ∈ 2κ(x ∈ CUB ∩ [T ]) ∧ ∃y ∈ 2κ(y ∈ NS ∩ [T ]),

where NS is the ideal of non-stationary subsets of κ . Define x ∈ 2κ as follows:

x(α) :=
{

fT (α) if α ∈ dom( fT ),
1 otherwise.

Then obviously x ⊇ lev(T ) and so x ∈ CUB ∩ [T ]. Analogously, we can define

y(α) :=
{

fT (α) if α ∈ dom( fT ),
0 otherwise.

Hence, y ∈ NS ∩ [T ]. �

The rest of this section is devoted to prove Lemma 4.2. We use a variant of Schlicht’s method to only work
with branches having good quotient. We need the following key lemma. Hereafter, VTα denotes the <κ-support
α-iteration of VT, introduced in § 3.
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Lemma 4.3 Let α < κ+. Let Ṫ be the canonical VT0-name for the generic Silver tree added by VT0, and ẋ be
a VTα-name for a Cohen branch through Ṫ . Let G be the VTα-generic filter over N and z = ẋG . Then VTα/ẋ=z
is equivalent to VTα .

Note that, unlike Schlicht’s work, here the name for a branch comes from a “larger” forcing than the one adding
the generic tree. So we need a slight generalization of his argument.

From now on, ẋ , Ṫ , G will be as in the statement of Lemma 4.3, while x p will denote the initial segment of ẋ
decided by p := 〈 ṗ(ξ) : ξ < α〉 ∈ VTα .

We prove some preliminary results.

Claim 4.4 VT∗
α := {p ∈ VTα : |x p| ≥ ht(p(0))} is dense in VTα .

P r o o f . Given p ∈ VTα we have to find p′ ≤ p in VT∗
α . Start with p0 := p and then, for every n ∈ ω,

pick pn+1 ≤ pn such that |x pn+1 | > ht(pn(0)). Let pω := ⋃
n∈ω pn and w := ⋃

n∈ω x pn . Then w ⊆ x pω
and |w| =

ht(pω(0)). Hence p′ := pω has the required property. �

In the following two claims, we need to work with conditions forcing ẋ ∈ Ṫ . Note that, for every p0 ∈ VT∗
α

we can always find p ≤ p0 such that p � ẋ ∈ Ṫ . Hence, from now on, we shall always consider conditions p
sufficiently strong to force ẋ ∈ Ṫ .

Claim 4.5 For every p ∈ VT∗
α we have |x p| = ht(p(0)).

P r o o f . Note that p � ẋ ∈ Ṫ ∧ p(0) � Ṫ , where � means “initial segment”; hence, there exists t ∈
term(p(0)) such that p � t ⊂ ẋ . By contradiction, assume x p = t�s, for some t ∈ term(p(0)) and non-empty
s ∈ 2<κ . Let S be the downward closure of

⋃{t ⊕ t ′ : t ∈ term(p(0))}, for some t ′ ⊥ t�s with t ′ ⊃ t . Let
p′ ∈ VTα be defined as

p′(ι) :=
{

S if ι = 0,

ṗ(ι) if ι > 0.

Then pick p∗ ≤ p′ such that p∗ ∈ VT∗
α . Since p∗ � S � Ṫ and |x p∗ | ≥ ht(S), it follows that t ′ ⊆ x p∗ and so

x p∗ ⊥ x p, contradicting p∗ ≤ p. �

Claim 4.6 ∀p ∈ VT∗
α∀s ∈ 2<κ(x p ⊆ s ⇒ ∃p∗ ∈ VT∗

α(s ⊆ x p∗)).

P r o o f . The argument is very similar to the one above. Note that for every p ∈ VT∗
α , there exists t0 ∈

term(p(0)) such that t0 = x p. Pick s ∈ 2<κ such that x p ⊆ s. Let S be the downward closure of
⋃{t ⊕ s : t ∈

term(p(0))}. Define p′ ∈ VTα as follows :

p′(ι) :=
{

S if ι = 0,

ṗ(ι) if ι > 0.

Then pick p∗ ∈ VT∗
α such that p∗ ≤ p′. Since p∗ � S � Ṫ and |x p∗ | ≥ ht(S), it follows that s ⊆ x p′ ⊆ x p∗ . �

Corollary 4.7 Let D ⊆ VT∗
α be open dense. Then Wq := {x p ∈ 2<κ : p ∈ D ∧ p ≤ q} is dense in C below

xq .

P r o o f o f L e m m a 4.3. The proof is completely analogous to the one of Schlicht for C. We give it for
completeness and because we actually deal with VTα-names for branches in Ṫ instead of VT-names only.

We shall prove the lemma for VT∗
α , but since it is forcing equivalent to VTα , the same will hold true for the

latter as well (and then even for Cα). It is well-known that VT∗
α/ẋ=z = VT∗

α\⋃
β<γ Aβ , where the elements of

this union are recursively defined in N[z] as follows:

A0 := {p ∈ VT∗
α : ∃ξ < κ(p � ẋ(ξ) �= z(ξ))}.

Aβ+1 := {p ∈ VT∗
α : ∃D ⊆ Aβ open dense below p , D ∈ N}.

Aλ :=
⋃
β<λ

Aβ, for λ limit ordinal,

and finally γ is chosen so that Aγ = Aγ+1.
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Note that γ = 0; by contradiction, pick p ∈ A1\A0. Since p ∈ A1, it follows that there exists D ⊆ A0 such
that D ∈ N and D is dense below p. Then the set Wp := {x p′ ∈ 2<κ : p′ ∈ D ∧ p′ ≤ p} is dense in C below x p,
by Corollary 4.7, and so there exists p′ ∈ D such that x p′ ⊂ z, as z is Cohen over N (and x p ⊂ z, by p /∈ A0).
Also since D ⊆ A0, it follows p′ ∈ A0. But, by definition,

p′ ∈ A0 ⇔ p′ � ẋ(ξ) �= z(ξ), for some ξ < κ

⇔ x p′ �⊂ z,

providing us with a contradiction. Hence we get

VT∗
α/ẋ=z = {p ∈ VT∗

α : ∀ξ < κ(p �� ẋ(ξ) �= z(ξ))} = {p ∈ VT∗
α : x p ⊂ z},

which is a <κ-closed subset of a forcing equivalent to C, and so it is in turn equivalent to C. �
We now have all tools needed for proving the main lemma of this section.

P r o o f o f L e m m a 4.2. Let X ⊆ 2κ be a set defined by some formula ϕ with ordinal parameters and
v ∈ Onκ , which we may assume to be absorbed into the ground model, by the κ+-cc. Also, for any x ∈ [TG0 ]

N[G] ,
there is α < κ+ and a Cα-name ẋ for such x . Note that, by Remark 3.3, x is Cohen over N, and by Lemma 4.3,
ẋ has good quotient in Cα , and hence in Cκ+ as well. Indeed, Cκ+ can be viewed as Qẋ ∗ Ṙ0 ∗ Ṙ1, where Qẋ is
the forcing generated by ẋ (and so it is equivalent to C as x is Cohen over N), while �Qẋ Ṙ0

∼= Cα (that means,
N[x ] |= Ṙx

0
∼= Cα), since x has good quotient, and finally Ṙ1 is just a “tail” of Cκ+ , and so it is equivalent to Cκ+

itself. So let us put Ṙ = Ṙ0 ∗ Ṙ1, so to have N[x ] |= Ṙx ∼= Cκ+ .
Let x be Cohen over N with good quotient. Then

N[x ] |= “ �Ṙx ϕ(x)” or N[x ] |= “ ��Ṙx ϕ(x)”.

Assume the former, and put ϑ(x) := “ �Ṙx ϕ(x)” Then there exists s ∈ C such that s � ϑ(ẋ). Pick a stationary-
Silver tree T of good Cohen branches over N such that stem(T ) = s. Hence, for every z ∈ [T ], we have N[z] |=
ϑ(z), and so

N[z] |= “ �Ṙz ϕ(z)”.

Since any z has good quotient, it follows that Ṙz is Cκ+ . That means that there exists H filter Ṙz-generic (i.e.,
Cκ+ -generic) over N[z] such that N[z][H ] = N[G]. Hence N[G] |= ϕ(z), that gives us N[G] |= [T ] ⊆ X .

For the case N[x ] |= “ ��Ṙx ϕ(x)”, simply note that “ ��Ṙx ϕ(x)” is equivalent to “ �Ṙx ¬ϕ(x)”, by weak
homogeneity. Hence, a specular argument provides us with T ∈ Vstat such that N[G] |= [T ] ∩ X = ∅. �

Note that lev(T ) is both stationary and co-stationary. As a consequence, [T ] is completely disjoint both from
CUB and from NS, and so there is no contradiction with Lemma 4.1.

A word about the Silver game. In the classical setting one can uniformly introduce an unfolding game
associated with any notion of regularity coming from a certain tree forcing (cf. [8]). Here, we focus on the
unfolding game connected to the Silver measurability. To this aim we need to introduce the ideal IV of Silver
small sets.

Definition 4.8 X ⊆ 2κ is said to be V-null iff for all T ∈ V there exists T ′ ≤ T , T ′ ∈ V such that [T ′] ∩ X = ∅.
Further, we define IV as the κ+-ideal κ+-generated by the V-null sets.

For emulating the classical unfolding game, we need to satisfy, for every X ⊆ 2κ ,

if II has a winning strategy in G(X) then X ∈ IV; (∗)

if I has a winning strategy in G(X) then there exists T ∈ V such that [T ] ⊆ X. (∗∗)

Nevertheless, in the context of 2κ the situation seems to be less clear. In our generalized setting, the output of
the game has to be a κ-real, and so we consider games of length κ . The basic idea is the same as the standard case,
i.e., player I and II play conditions such that each is stronger than the previous one. But what should the rule be at
limit steps? First of all, note that at limits it is natural to pick the intersection of all previous moves, and hence we
want the forcing to be <κ-closed. This forces us to work with Vclub. We essentially have two choices, depending
on who chooses first at limit steps.
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Definition 4.9 We use the following notation:

T ′ � T iff T ′ ≤ T and |stem(T ′)| > |stem(T )|.
Given X ⊆ 2κ , we define two games G1(X) and G2(X) of length κ as follows: for n < ω, player I chooses
T 1

n � T 2
n−1, and player II chooses T 2

n � T 1
n . From the first limit ordinal, G1(X) and G2(X) are defined differently:

1. In G1(X) player I chooses first, i.e., player I first chooses T 1
ω � ⋂

ξ<ω T 2
ξ ; then player II chooses T 2

ω � T 1
ω .

Then the game continues by following this order of choice (so in particular, at any limit λ, I chooses first).
2. In G2(X) the situation is reversed: player II first chooses T 2

ω � ⋂
ξ<ω T 2

ξ ; then player I chooses T 1
ω � T 2

ω .
Then the game continues by following this order of choice (so in particular, at any limit λ, II chooses first).

The output of the game will then be x such that {x} := ⋂
ξ [T

1
ξ ], and we shall say that I wins iff x ∈ X , otherwise

II wins.

Unfortunately, both fail to have the desired properties (*) and (**) mentioned above. In fact, the reason for that
is strictly connected to the bad behaviour of Vclub-measurability.

Lemma 4.10 Player II has a winning strategy in G2(CUB), while player I has a winning strategy in G1(CUB).

P r o o f . We recursively construct the winning strategy of II in G2(CUB) as follows: we only take care of limit
steps λ: if 〈T 1

ξ , T 2
ξ : ξ < λ〉 is the partial play, then II chooses T 2

λ � ⋂
ξ<λ T 2

ξ so that for αλ := |stem
(⋂

ξ<λ Tξ

)|,
one has

|stem(T 2
λ )| > αλ ∧ stem(T 2

λ )(αλ) = 0. (1)

Note that one can make such a choice since stem(
⋂

ξ<κ Tξ ) is a splitting node. Let us call σ such a strategy for
player II. For every T 1

∗ := 〈T 1
ξ : ξ < κ〉 play of I, one has that the output produced by σ (T 1

∗ ) is not in CUB, since
the set of {αλ : λ < κ limit ordinal} is closed unbounded.

To check the second assertion, we can analogously build the winning strategy τ for player I in G1(CUB). Player
I chooses first at limit steps λ, and so, in (1), we can freely choose stem(T 1

λ )(αλ) = 1. In such a way, for every
T 2

∗ := 〈T 2
ξ : ξ < κ〉 play of II, one has the output produced by τ (T 2

∗ ) is in CUB. �
An interesting issue might be to switch the point of view in the following sense. Define X ⊆ 2κ to be Gi -

measurable iff Gi (X) is determined. By Lemma 4.10, the club filter CUB is measurable in both cases.

Question 4.11 Can we force all Onκ -definable sets to be Gi -measurable? Or, in other words, can one find a
model where Gi ’s are determined for all Onκ -definable sets?

5 Full-Miller measurability

In this section, we prove that Coll(κ,< λ) forces that all Onκ -definable subsets of κκ are Mfull-measurable. We
assume 2κ = κ+. Consider the forcing MT introduced in § 3, for adding a full-Miller tree of Cohen reals.

Claim 5.1 The forcing MT is forcing-equivalent to Coll(κ, 2κ).

P r o o f . The forcing MT is clearly <κ-closed and has size 2κ . Moreover, MT collapses 2κ to κ; in fact, for
every A := {aξ : ξ < κ} ⊆ κ of size κ , A ∈ N, the set

DA := {σ ∈ MT : ∃t ∈ split(σ )∀ξ < κ(t�ξ�aξ ∈ σ )}
is open dense. Hence the function H : split(TG) → 2κ ∩ N defined by H(t) := {α : ∃ξ < κ(t�ξ�α)} is surjective,
and so 2κ ∩ N collapses to κ .

The forcing MT is then <κ-closed, of size 2κ , collapsing 2κ to κ , and hence equivalent to Coll(κ, 2κ). �
Claim 5.2 Let Q = Coll(κ,< λ), and let Ṫ , ẋ be MT ∗ Q-names for the full-Miller generic tree added by

G(0) and a branch of [Ṫ ], respectively. There exists MT0 ∗ P ⊆ MT ∗ Q dense subposet such that for every
(σ, ṗ) ∈ MT0 ∗ P there exists t ∈ term(σ ) such that x(σ, ṗ) = t , where x(σ, ṗ) is the initial segment of ẋ decided by
(σ, ṗ).
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P r o o f . First of all, we want to prove an analogue of Claim 4.4. More precisely, we want to prove that
the set of conditions (σ, ṗ) for which there exists t ∈ term(σ ) such that t ⊆ x(σ, ṗ) is dense in MT ∗ Q. To this
aim, we start from a condition (σ0, ṗ0) and we inductively build (σn+1, ṗn+1) ≤ (σn, ṗn) such that there exists
tn ∈ term(σn) such that x(σn+1, ṗn+1) ⊇ tn . Then put σ = ⋃

n∈ω σn , pick ṗ such that σ � ṗ ≤ ṗn for all n ∈ ω, and
put w = ⋃

n∈ω tn . By construction, w ∈ term(σ ) and x(σ, ṗ) ⊇ w, as (σ, ṗ) ≤ (σn, ṗn), for all n ∈ ω.
The second part is an analogue of the proof of Claim 4.5, i.e., we want to show that if x(σ, ṗ) ⊇ t , for some

t ∈ term(σ ), none of the extensions of t can be ruled out, and so t = x(σ, ṗ) . By contradiction, assume x(σ,p) = t�s,
for some t ∈ term(σ ) and non-empty s ∈ 2<κ . Let σ ′ be the downward closure of σ ∪ ⋃{t0�ξ : ξ ∈ κ}, for some
t0 ⊥ t�s with t0 ⊃ t . Then pick (σ ′′, q̇) ≤ (σ ′, ṗ) such that there exists t1 ∈ term(σ ′′) such that t1 ⊆ x(σ ′′,q̇) .
Hence, one has x(σ ′′,q̇) ⊇ t1 ⊇ t0 ⊥ x(σ, ṗ) , contradicting (σ ′′, q̇) ≤ (σ, ṗ). �

With a similar construction, we can get an analogue of Claim 4.6 and Corollary 4.7 as well.

Claim 5.3 Let G be MT0 ∗ P-generic over N. Let Ṫ be the canonical name for the generic Miller tree added by
G(0), ẋ an MT0 ∗ P-name for a branch in Ṫ , and z = ẋG . Then MT0 ∗ P/ẋ = z is forcing-equivalent to MT0 ∗ P
(and hence to Coll(κ,< λ)).

P r o o f . Use the notation (MT0 ∗ P)z := MT0 ∗ P/ẋ = z. Claim 5.2, together with the analogues of Claim
4.6 and Corollary 4.7, gives the same argument as in the proof of Lemma 4.3, and so we can obtain

(MT0 ∗ P)z = {(σ, ṗ) ∈ MT0 ∗ P : x(σ, ṗ) ⊂ z}.
We work in N[z]. Note that

(MT0 ∗ P)z = {(σ, ṗ) ∈ MT0 ∗ P : ∃t ∈ term(σ )(t ⊂ z ∧ x(σ, ṗ) = t)}.
“⊆”: Clearly, if ∀t ∈ term(σ )(t �⊂ z), then (σ, ṗ) /∈ (MT0 ∗ P)z , as (σ, ṗ) � σ � Ṫ . ⊇: if there exists t ∈

term(σ ) such that t ⊂ z, then x(σ, ṗ) = t ⊂ z.
First, we prove that

P0 := {σ ∈ MT0 : ∃t ∈ term(σ )∃ ṗ ∈ P(t ⊂ z ∧ x(σ, ṗ) = t)} (2)

is <κ-closed and collapses 2κ to κ , and so it is equivalent to MT0. Let {σα : α < δ}, for δ < κ , be a decreasing
sequence of conditions in P0, and for every α < δ, let tα ∈ term(σα) be such that tα ⊂ z and ṗα ∈ P such that
x(σα, ṗα) = tα . Then put σδ = ⋃

α<δ σα , tδ = ⋃
α<δ tα and pick ṗδ ∈ P such that σδ � ∀α < δ( ṗδ ≤ ṗα). Hence,

tδ ∈ term(σδ), tδ ⊂ z and tδ = x(σδ, ṗδ) , which means σδ ∈ P0. Hence, the poset is <κ-closed. The proof that it also
collapses 2κ to κ is the same as the one given for Claim 5.1, since the sets DA’s are dense in P0 as well; simply,
for every σ ∈ P0, pick t ∈ term(σ ) such that t ⊥ x(σ, ṗ) , for some ṗ ∈ P, and then let σ ′ ≤ σ be the downward
closure of σ ∪ ⋃{t�ξ�aξ : ξ ∈ κ}, where A := {aξ : ξ ∈ κ}.

Secondly, define

Ṗ1 := { ṗ ∈ P : ∃σ ∈ MT0((σ, ṗ) ∈ (MT0 ∗ P)z)}. (3)

Let H be an arbitrary MT0-generic filter over N[z]. Work in N[z][H ]. Then Coll(κ,< λ) is equivalent to P1.
Indeed, first note that, the argument used in the second part of the proof of Claim 5.2 actually gives the following:
if ṗ, q̇ ∈ P are such that σ � q̇ ≤ ṗ and (σ, ṗ) ∈ (MT0 ∗ P)z , then x(σ, ṗ) = x(σ,q̇) , and so (σ, q̇) ∈ (MT0 ∗ P)z

as well. (if we drop the assumption σ � q̇ ≤ ṗ, the only thing that we can say in general is that ∃t0 ∈ term(σ )
such that x(σ, ṗ) = t0 and ∃t1 ∈ term(σ ) such that x(σ,q̇) = t1, but t0 and t1 might be different). Furthermore, let
{pξ : ξ < δ}, for δ ≤ λ, be the set of minimal conditions in P1 (i.e., there is no q ≥ pξ and q �= pξ such that
q ∈ P1); we can build a partial function e : Coll(κ,< λ) → Coll(κ,< λ), satisfying:

1. for every ξ < δ, for all α0 ∈ λ and β0, μ0 ∈ κ , there are α′
0 ∈ λ and β ′

0, μ
′
0 ∈ κ such that,

e(pξ ∪ {((α0, β0), μ0)}) = {((α′
0, β

′
0), μ

′
0)};

2. for all α′
0 ∈ λ and β ′

0, μ
′
0 ∈ κ , there are ξ0 < δ, α0 ∈ λ and β0, μ0 ∈ κ such that

e(pξ ∪ {((α0, β0), μ0)}) = {((α′
0, β

′
0), μ

′
0)};

3. let q0 := pξ0 ∪ {((α0, β0), μ0) and q1 := pξ1 ∪ {((α1, β1), μ1). Then q1 ≤ q0 implies e(q1) ≤ e(q0) and
q1 ⊥ q0 implies e(q0) ⊥ e(q1);
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4. let P2 := P1\{pξ : ξ < δ}; then e|P2 : P2 → Coll(κ,< λ) is a dense embedding.

This e can be constructed by a pretty standard argument, simply by following a bijection δ × λ × κ × κ ↔
λ × κ × κ , and by using the homogeneity of Coll(κ,< λ).

Hence, (2) and (3) give: (MT0 ∗ P)z
∼= P0 ∗ Ṗ1

∼= Coll(κ,< λ). �
Lemma 5.4 Let λ be inaccessible greater than κ , and let G be Coll(κ,< λ)-generic over N. Then

N[G] |= “all Onκ -definable subsets of κκ are Mfull-measurable”.

P r o o f . The argument is in strict analogy to the one of Lemma 4.2, and we just give a sketch. Let X ⊆ κκ

be defined via some formula ϕ whose parameters can be absorbed into the ground model N, by λ-cc. Let T0 be the
generic tree in Mfull added by the first step, i.e., T0 is associated with G0 := G ∩ Coll(κ, κ+). By Claim 5.3, we
know that each branch x ∈ [T0] ∩ N[G] has good quotient, and so Coll(κ,< λ) can be viewed as Q̇x ∗ Ṙ, where
Q̇x is the poset generated by x and N[x ] |= Ṙx ∼= Coll(κ,< λ).

Let x be Cohen over N with good quotient and assume N[x ] |= “ �Ṙx ϕ(x)”. Work into N[x ]; pick s ∈ κ<κ such
that s � “ �Ṙx ϕ(x)” (here we are using C ∼= (κ<κ,⊂)). Pick a full-Miller tree T of good Cohen branches with
stem(T ) = s. Then proceed as in Lemma 4.2: for every z ∈ [T ], N[z] |= “ �Ṙz ϕ(z)”, which implies there exists
a Coll(κ,< λ)-generic filter H over N[z] with N[z][H ] = N[G], and so N[G] |= ϕ(z), as Ṙz ∼= Coll(κ,< λ). The
case N[x ] |= “ ��Ṙx ϕ(x)” is analogous. �

Our result cannot be improved by replacing T ∈ Mfull with trees having branches z satisfying {α < κ :
y�α is splitting} being club. Indeed, a similar argument to the one presented in Lemma 4.1 shows that CUB is not
Mclub-measurable (see also [3, Theorem 2.12] for a more general approach). However it remains open whether
one can get Mstat

full -measurability for all Onκ -definable subsets of κκ .

Remark 5.5 In [9], the authors investigate two properties related to the Miller measurability: the Hurewicz
dichotomy and a strengthening called the Miller tree Hurewicz dichotomy. These notions are related to the Miller
measurability, but they are not in general equivalent. The authors of [9] prove that Coll(κ,< λ) forces all Onκ -
definable sets to have the Hurewicz dichotomy. Furthermore, they prove that if κ is not weakly compact, then
the Miller tree Hurewicz dichotomy fails for closed sets, whereas that cannot be true for the Miller measurability
because of Lemma 5.4. On the contrary, for κ weakly compact, they prove that the two dichotomies are equivalent
and they both imply the Miller measurability pointwise, but it is not clear which is the relation with the full-Miller
measurability.

6 Open questions

In § 4 we have proved that Cκ+ forces all Onκ -definable sets to be stationary-Silver measurable, for κ inaccessible.
The latter assumption was essential in our proof to show that C adds a stationary Silver tree of Cohen branches.
Therefore, the following question arises naturally.

Question 6.1 Can one force all Onκ -definable sets to be stationary-Silver measurable, for κ successor?

Even if not strictly necessary for a positive answer to Question 6.1, another issue strictly related is the following.

Question 6.2 Does C add a stationary Silver tree of Cohen branches even for κ successor?

About Question 6.2, my intuition inclines to a negative answer.
Another interesting issue is the role of the inaccessible λ concerning full-Miller measurability and Miller

measurability.

Question 6.3 Can one force all Onκ -definable sets to be Miller measurable without using inaccessible
cardinals?

Question 6.4 What about the same question for full-Miller measurability instead?

The key point here is that we do not have an analogous study in the classical setting; indeed, in the standard case,
projective Baire property implies projective Miller measurability (and even projective full-Miller measurability)
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and so Shelah’s amalgamation and sweetness provide us with a model for those notions of regularity without any
need of an inaccessible. But, in our generalized context, the Baire property fails for �1

1 , and hence we really need
a direct method to get Miller measurability. A possible solution might be to consider an amoeba forcing adding a
Miller tree of Cohen branches in a gentler way than Coll(κ, 2κ), in order to get: 1) κ+ will not be collapsed, and
2) one could obtain sufficiently many good Cohen branches.

The issue of separating different regularities classwise has been developed in the classical setting: in particular
a method for separating Silver and Miller on all sets has been presented in [6]. A similar questions arises here.

Question 6.5 Can one force all sets to be Silver measurable but there exists a non-Miller measurable set?

Finally, a last important research branch regards the �1
1-level. In fact, because of the �1

1-well ordering of
(κκ)L, one obtains �1

1 non-regular sets in L. As a consequence, some arguments used in the standard setting
for �1

2 sets hold true for �1
1 in the generalized context. The investigation of this topic has been initiated by

Friedman, Khomskii and Kulikov in [3]. We also believe that this topic be strictly connected to the study of
cardinal characteristics associated with the ideals generated by tree-forcings, and hence a careful study of the
amoeba forcings is necessary. In the standard setting, amoeba forcings have been studied in [11] and [7], where the
authors have presented some applications to regularity properties and cardinal characteristics. In the generalized
setting such a topic has not been suitably developed yet, and we aim at extending such an investigation.
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