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In this paper we analyse some questions concerning trees on κ, both for the countable and the uncountable case,
and the connections with Cohen reals. In particular, we provide a proof for one of the implications left open in
[6, Question 5.2] about the diagram for regularity properties.
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1 Introduction

Throughout the paper we deal with trees on η<κ, with κ ≥ ω being any regular cardinal and η ≥ 2 or if η is
infinite then η regular too.

A tree-forcing P is a poset whose conditions are perfect trees p ⊆ η<κ with the property that for every p ∈ P
and every t ∈ p one has p�t := {t′ ∈ p : t′ ⊆ t ∨ t ⊆ t′} ∈ P; the ordering is q ≤ p ⇔ q ⊆ p. In case
κ = ω and η ∈ {2, ω} some of the most popular tree-forcings are for instance: the Hechler forcing D ([1, Def.
3.1.9, p.104]), eventually different forcing E ([1, Def. 7.4.8, p.366]), Sacks forcing (see [2, p.3]), Silver forcing
V (see [2, p.4]), Miller forcing M (see [2, p.3]), Laver forcing (see [2, p.3]), Mathias forcing R (see [2, p.4]),
random forcing B (see [1, p. 99]). The relation between tree-forcings and Cohen reals has been rather extensively
developed in the literature. The reason to study such connections for different types of tree-forcing notions was
mainly to “separate” different kinds of cardinal characteristics, in particular from cov(M). We can associate a
tree-forcing P in a standard way with a notion of P-nowhere dense sets, P-meager sets and P-measurable sets.

Definition 1.1
Given P a tree-forcing notion and X ⊆ ηκ a set of κ-reals, we say that:

• X is P-nowhere dense if

∀p ∈ P∃q ≤ p([q] ∩X = ∅),

and we put NP := {X : X is P-nowhere dense}.

• X is P-meager if there are Ai ∈ NP such that X ⊆
⋃
i∈κAi, and we put IP = {X : X is P-meager}.

• X is P-measurable if

∀p ∈ P∃q ≤ p([q] ∩X ∈ IP ∨ [q] \X ∈ IP).

• A family Γ of subsets of κ-reals is called well-sorted if it is closed under continuous pre-images. We
abbreviate the sentence “every set in Γ is P-measurable” by Γ(P).

For example when P is the Cohen forcing C, then C-meagerness coincides with topological meagerness and C-
measurability coincides with the Baire Property. When P is the Random forcing B, then B-meagerness coincides
with Lebesgue measure zero and B-measurability coincides with Lebesgue measurability.
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The presence of Cohen reals added by a tree-forcing P has an impact both on the structure of IP and on the
corresponding notion of P-measurability, as specified in the tables introduced below. More specifically, if P
adds a Cohen real then the way of coding the P-generic into a Cohen real often induces a construction providing
Γ(P) ⇒ Γ(C) (e.g., see [5, Theorem 3.1] where such a connection is shown in case of P = D). Moreover the
presence of a coded Cohen real often implies that NP and IP do not coincide. For instance, this holds for the
Hechler forcing D and for the eventually different forcing E. Both these forcings are ccc, and indeed σ-centered.
So, a natural question that arises is whether one can find a non-ccc tree-forcing notion P for which Γ(P)⇒ Γ(C)
and IP 6= NP. In this paper we give a positive answer, by defining and analysing a variant of Mathias forcing in
the space 3ω instead of 2ω .

As a more general question, for a tree-forcing P, one can consider the four properties mentioned so far, namely:
1) P adds Cohen reals; 2) Γ(P)⇒ Γ(C); 3) IP 6= NP; 4) P is ccc. So for instance, if we consider the most popular
tree-forcings we get the following table, where T stands for the variant of Mathias forcing defined in Section 2,
and Mfull is the variant of Miller forcing where we require that every splitting node splits into the whole ω. The
results in Table 1 without an explicit reference are deemed as folklore.

Table 1
Adding Cohen IP 6= NP Γ(P)⇒ Γ(C) c.c.c

D, E 3 3 3([5, Theorem 3.1] ) 3

B 7 7 7([14]) 3

V, M, R 7 7 7 7

T 3(Lemma 2.4) 3(Lemma 2.5) 3(Proposition 3.3) 7

Mfull 3 7 3([8, Theorem 3.4]) 7

Note that the table above refers to the tree-forcings in the ω-case, and so defined on spaces like 2ω , ωω or [ω]ω .
For κ > ω we could consider the same table, but then the situation changes and we can get several different

developments. We always assume κ<κ = κ.

1. For Dκ (and similarly for Eκ), the constructions done for the ω-case (e.g., the proof of [5, Theorem 3.1])
easily generalises;

2. for the κ-Silver forcing, the situation seems to depend on whether κ is inaccessible or not; but it is rather
independent of whether we consider club splitting or other version of < κ-closure;

3. for κ-Mathias forcing, the situation is drastically different from the ω-case, as we can prove a strict connec-
tion with the Baire property and Cohen reals;

The table for κ uncountable then appears as follows, where κ denotes any cardinal, λ any inaccessible cardinal
and γ any not inaccessible cardinal:

Table 2
Adding Cohen IP 6= NP Γ(P)⇒ Γ(C) κ+-c.c

Dκ, Eκ 3(Definition 48 [4]) 3 3(Reamrk 4.7) 3

MClub
κ 3(Proposition 77 [4]) 7(Lemma 3.8. [6]) 3 7

VClub
λ 7 7 7(Theorem 4.11. [6]) 7

VClub
γ ? ? ? 7

RClub
κ 3(Remark 30 [11]) 3(Lemma 4.1. [6]) 3 3

Rκ 3(Remark 30 [11]) 3(Lemma 4.6) 3(Proposition 31 [11]) 7
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Basic notions and definitions The elements in ηκ are called κ-reals or κ-sequences, where η is also a regular
cardinal, usually η = 2 or η = κ. Given s, t ∈ η<κ we write s ⊥ t iff neither s ⊆ t nor t ⊆ s (and we say s and
t are incompatible). The following notations are also used.

• A tree p ⊆ η<κ is a subset closed under initial segments and its elements are called nodes. We consider
< κ-closed trees p, i.e., for every ⊆-increasing sequence of length < κ of nodes in p, the supremum (i.e.,
union) of these nodes is still in p. Moreover, we abuse of notation denoting by |t| the ordinal dom(t).

• We say that a < κ-closed tree p is perfect iff for every s ∈ p there exists t ⊇ s and α, β ∈ η, α 6= β,
such that taα ∈ p and taβ ∈ p; we call such t a splitting node (or splitnode) and set Split(p) := {t ∈ p :
t is splitting}.

• We say that a splitnode t ∈ p has order type α (and we write t ∈ Splitα(p)) iff ot({s ∈ p : s ( t ∧ s ∈
Split(p)},() = α.

• stem(p) is the longest node in pwhich is compatible with every node in p; p�t := {s ∈ p : s is compatible with t}.

• [p] := {x ∈ ηκ : ∀α < κ(x�α ∈ p)} is called the set of branches (or body) of p.

• succ(t, p) := {α ∈ η : taα ∈ p}, for t ∈ p.

• A poset P is called tree-forcing if its conditions are perfect trees and for every p ∈ P, and every t ∈ p, one
has p�t ∈ P too.

Remark 1.2 When comparing different notions of P-measurablity, i.e., investigating the relationship between
Γ(P) and Γ(Q) for different tree-forcings P and Q, we often refer to different topological spaces. As Brendle
pointed out explicitly in [2] the idea is to consider the analogue versions in the space of strictly increasing
sequences ω↑ω which can be seen to be almost isomorphic to the spaces we deal with (for the details see paragraph
1.2 in [2]). The only case that is not covered in [2] is 3ω . In this paper we need to implement this case as well, as
we are going to work with it in the coming section. Actually in trying to describe a suitable isomorphism, we need
to consider a special subspace, in the same fashion as we do when we consider only the subspace of 2ω consisting
of binary sequences that are not eventually 0. Analogously we consider H := {x ∈ 3ω : ∃∞n(x(n) = 2)} and
we define the appropriate map ϕ : H → ω↑ω as follows: we fix the lexicographic enumeration b : 2<ω → ω.
So b(s) ≤ b(t), whenever s ⊆ t and in particular b(〈〉) = 0. For every x ∈ H let {nk : k ∈ ω} enumerate
the set of all inputs n such that x(n) = 2. Then define σx0 := 〈x(i) : 0 ≤ i < n0〉 and for every j ∈ ω,
σxj+1 := 〈x(i) : nj < i < nj+1〉. Finally put

ϕ(x) := 〈b(σx0 ), b(σx0 ) + b(σx1 ) + 1, b(σx0 ) + b(σx1 ) + b(σx2 ) + 2, . . . 〉 = 〈
∑
i≤n

b(σxi ) + n : n ∈ ω〉.

One can easily check that ϕ is an isomorphism.

2 A variant of Mathias forcing

Definition 2.1 We define T as the tree-forcing consisting of perfect trees p ⊆ 3<ω with Ap ⊆ ω such that:

• for every t ∈ p (|t| ∈ Ap ⇔ t ∈ Split(p)), we refer to Ap as the set of splitting levels of p;

• if t ∈ Split(p), then t is fully splitting (i.e., for every i ∈ 3, tai ∈ p);

• for every s ⊇ stem(p), if s /∈ Split(p) then sa2 /∈ p;

• for every s, t ∈ p, |s| = |t|, s, t /∈ Split(p), one has

∀i ∈ 2(sai ∈ p⇔ tai ∈ p).
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Intuitively, any condition p ∈ T is a perfect tree in 3<ω such that at any level n ∈ ω either p uniformly splits,
or uniformly takes the same value.

Note that T is not c.c.c.. To show that let E ⊆ ω be the set of even numbers and O = ω \ E. For each a ⊆ O
we define a condition pa ∈ T in the following way: on even levels we uniformly split and on odd levels n we
uniformly choose the value 1 whenever n ∈ a and 0 otherwise, so

pa := {t ∈ 3<ω : ∀n ∈ O ∩ |t| ((n ∈ a→ t(n) = 1) ∧ (n 6∈ a→ t(n) = 0))}.

We claim that {pa : a ⊆ O} is an antichain. In fact, let a, b ⊆ O be two different subsets and fix n ∈ O such
that n ∈ a \ b or n ∈ b \ a. W.l.o.g. assume n ∈ a \ b. Then each branch x through pa must satisfy x(n) = 1,
whereas each branch y through b satisfies y(n) = 0. Thus [pa] ∩ [pb] = ∅ and in particular pa ⊥ pb.

Under a certain point of view T seems to behave like the original Mathias forcing R. For instance, the
following proof showing that T satisfies Axiom A follows the same line as for R. However, going more deeply
one has to be careful, as even if T still satisfies quasi pure decision (Lemma 2.3), it fails to satisfy pure decision
(Lemma 2.4). Thus, we examine these proofs in closer detail to better understand the main differences between
T and R.

Proposition 2.2 T satisfies Axiom A.

P r o o f. We define the partial orderings 〈≤n : n ∈ ω〉 in the expected way: For p, q ∈ T we put q ≤n p
if and only if q ≤ p and the two sets of splitting levels Aq and Ap coincide on the first n + 1 elements. So, in
particular q ≤0 p implies stem(q) = stem(p). It is easy to check that fusion sequences exist. Let p ∈ T, k ∈ ω
and D ⊆ T a dense subset be given. We show that there is a stronger condition q ≤k p and a finite set E ⊆ D
pre dense below q. This proves that T satisfies Axiom A. Let Ap = {ni : i < ω} be an increasing enumeration
of the splitting levels of p. Observe that there are exactly 3k nodes t ∈ p of length nk. Each of those nodes is
splitting, so that there are exactly 3k+1 immediate successor-nodes. Let {ti : i < 3k+1} enumerate all nodes
t ∈ p of length nk+1. We construct q ≤k p together with a decreasing sequence p = q0 ≥ q1 ≥ ... ≥ q3k+1 = q.
Assume we want to construct qj+1. Find pj ∈ D so that pj ≤ qj�tj (this is always possible since D is dense).
We define qj+1 to be the condition which is obtained from qj , by copying pj above each node in qj of length
nk + 1. More precisely:

qj+1 := {t ∈ qj : (|t| ≤ nk + 1∨(|t| > nk + 1 ∧ ∃s ∈ pj ∀n ∈ ω
(nk < n < |t| → s(n) = t(n))))}.

It follows from the construction that for q := q3k+1 and j < 3k+1 we must have q�tj ≤ pj . In particular, we
have that q ≤k p. Put E := {pj : j < 3k+1}. We want to check that E is pre dense below q. Therefore, let
r ≤ q be given. Then there is j < 3k+1 such that r�tj ≤ q�tj . But also q�tj ≤ pj ∈ E and so r and pj are
compatible via r�tj .

Lemma 2.3 T satisfies quasi pure decision, i.e., for every open denseD ⊆ T, p ∈ T, there is q ≤0 p satisfying
what follows: if there exists q′ ≤ q such that q′ ∈ D, then q�stem(q′) ∈ D as well.

P r o o f. Let p ∈ T and D ⊆ T open dense be given. We construct a fusion sequence p = q0 ≥0 q1 ≥1 ...
such that the fusion q =

⋂
k qk witnesses quasi pure decision. Assume we are at step k + 1 of the construction

i.e. we have already constructed qk. Let Aqk = {ni : i ∈ ω} be the corresponding set of splitting levels. Let
{tj ∈ qk : j ∈ 3k} enumerate all nodes in qk of length nk. Similar to above we construct a decreasing sequence
qk = q0k ≥ q1k ≥ ... ≥ q3

k

k . Assume we are at step j < 3k. There are two cases:
Case 1: There is no stronger condition p′ ≤ qjk in D with stem(p′) = tj . Then do nothing and put qj+1

k := qjk.
Case 2: Otherwise there is a p′ ≤ qjk in D with stem(p′) = tj . As in the proof above we define

qj+1
k := {t ∈ qjk : (|t| ≤ nk + 1∨(|t| > nk + 1 ∧ ∃s ∈ p′ ∀n ∈ ω

(nk < n < |t| → s(n) = t(n))))};
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specifically qj+1
k �tj = p′. Finally defining qk+1 := q3

k

k , we get that the corresponding two sets of splitting levels
Aqk and Aqk+1

coincide on the first k + 1 elements and therefore qk+1 ≤k qk. This completes the construction.
Before showing that the fusion q :=

⋂
k qk witnesses quasi pure decision we make the following observation:

Since in the (k + 1)-th step in the construction of the fusion the k-th splitting level is fixed, we know for each
k ∈ ω and l > k that q ≤k ql. Therefore the two sets of splitting levels Aq and Aql coincide on the first l
elements.
Now let q′ ≤ q in D be given. Put t := stem(q′). Again we denote the splitting levels of q by Aq = {nk : k ∈
ω} and take nk such that |t| = nk. We look at the construction of qk+1. Then there is j < 3k with tj = t. Since
q′ ≤ q ≤ qjk and q′ ∈ D we know that in the construction of qj+1

k case 2 was applied i.e. qj+1
k �t = p′ for some

p′ ∈ D. Thus, using openness of D and q�t ≤ qj+1
k �t, we also get q�t ∈ D.

Lemma 2.4

1. T does not satisfy pure decision.

2. T adds Cohen reals.

P r o o f. (1). We have to find a condition p ∈ T and a sentence ϕ such that no q ≤0 p decides ϕ. We prove
something slightly stronger: Given any p ∈ T we can find a sentence ϕp such that there is no q ≤0 p deciding
ϕp.
So let p ∈ T and q ≤0 p be given (i.e. q ≤ p∧ stem(p) = stem(q)). Let ż be the T-name for the generic real. It
is clear that 
T ∃∞n ż(n) = 2. We can define a name σ̇z ∈ ωω ∩ V T such that


T σ̇z(k) = k-th 2 occurring in ż.

This means that in any generic extension V [z] the evaluation of σ̇z enumerates the set {k ∈ ω : z(k) = 2} ∈
V [z]. For k ∈ ω we define

ϕk := “there are even many 1’s occuring in ż between σ̇z(k) and σ̇z(k + 1)”.

Put k := |{n < |stem(q)| : stem(q)(n) = 2}| and let nq0 < nq1 denote the first two splitting levels of q. Take
q0, q1 ≤ q such that

1. stem(q0)(nq0) = 0 and stem(q0)(nq1) = 2,

2. stem(q1)(nq0) = 1 and stem(q1)(nq1) = 2.

Then there are at least k + 1 many 2’s occurring in stem(qi), therefore ϕk is decided by qi, i ∈ 2 and we get

q0 
 ϕk ⇔ q1 
 ¬ϕk.

This proves that q does not decide ϕk.

(2). We now show with a similar idea that T adds Cohen reals. Again let ż be the T-name for the generic real
and let σ̇z be as above. For every k ∈ ω,

• c(k) = 0 iff |{i ∈ ω : σ̇z(k) ≤ i < σ̇z(k + 1) ∧ ż(i) = 1}| is even

• c(k) = 1 iff |{i ∈ ω : σ̇z(k) ≤ i < σ̇z(k + 1) ∧ ż(i) = 1}| is odd.

Then 
T c ∈ 2ω . We want to show that c is Cohen. So fix p ∈ T, σ ∈ 2<ω and let cp ⊆ c be the part of c decided
by p. We aim to find q ≤ p such that q 
 cp

aσ ⊆ c. This is sufficient to show that c is Cohen.
Let k = |cp|, i.e. k is minimal such that c(k) is not decided by p. Define p = q0 ≥ q1 ≥ · · · ≥ q|σ| by

recursion as follows.
Assume we have constructed qj , j < |σ|. Let nj0 < nj1 be the first two splitting levels of qj . For i ∈ 2 take

ti ∈ qj of length nj1 + 1 so that ti(n
j
0) = i and ti(n

j
1) = 2. Put qij := qj�ti. Then we must have

|{m ∈ ω : nj0 ≤ m < nj1 ∧ stem(qij)(m) = 1}| = mod 2 σ(j) (1)
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8 Giorgio Laguzzi and Brendan Stuber-Rousselle: More on trees and Cohen reals

for exactly one i ∈ 2. Let qj+1 = qij such that (1) holds.
Then by construction, for every j < |σ|, q|σ| 
 c(|cp|+ j) = σ(j), i.e., q|σ| 
 cp

aσ ⊆ c.

Before moving to the issue concerning the ideals IT andNT, we have to clarify the space that we are interesting
in working with. To understand the point let us consider the standard Mathias forcing R. If we work in the Cantor
space 2ω literally, then we end up with a trivial example to show that NR 6= IR, namely the set of “rational
numbers”, i.e., the set Q := {x ∈ 2ω : ∃n∀m ≥ n(x(m) = 0)}. In a similar fashion one can check that the
sets Nn := {x ∈ 3ω : x(i) 6= 2 ∀i ≥ n} are T-nowhere dense, but the union

⋃
n∈ω Nn is not. We leave the

straightforward proof to the reader.
For the same argument we specified in Remark 2, indeed the space we really refer to when we work with the

standard Mathias forcing is not literally 2ω , but is the subspace obtained via the identification of [ω]ω and 2ω ,
i.e., the set {x ∈ 2ω : ∃∞n(x(n) = 1)}. In such a space the counterexample disappears and indeed we get
IR = NR. The main difference we want to make is that T behaves completely differently. In fact even when we
take the “proper” space H := {x ∈ 3ω : ∃∞n(x(n) = 2)} we cannot show thatNT = IT, as the following result
highlights (where the ideals are considered in the space H).

Lemma 2.5 NT 6= IT.

P r o o f. Given z ∈ H consider σz ∈ ωω as in the proof of the previous Lemma and also remind cz ∈ 2ω be
as follows:

• cz(k) = 0 iff |{i ∈ ω : σz(k) ≤ i < σz(k + 1) ∧ z(i) = 1}| is even

• cz(k) = 1 iff |{i ∈ ω : σz(k) ≤ i < σz(k + 1) ∧ z(i) = 1}| is odd.

Then define

Mn := {z ∈ H : ∀k ≥ n(cz(k) = 0)}.

We claim each Mn is T-nowhere dense, but
⋃
n∈ωMn is not. In fact given n ∈ ω and p ∈ T we can lengthen

the stem of p to get a stronger condition p′ ≤ p such that {k < |stem(p′)| : p′(k) = 2} has size > n. Let
Ap′ := {ni : i ∈ ω}. Now we take t ∈ Split2(p′) extending stem(p′)a2 i.e., t(n0) = 2 such that t(n1) 6= 2
and the set of {k > |stem(p′)| : t(k) = 1} is odd. Then q := p′�ta2 has no common branch with Mn. On the
other hand there is always a branch z ∈ [p] ∩H such that for all k > stem(p), cz(k) = 0.

3 Γ(P)⇒ Γ(C)

We now prove a rather general result, showing how the “Cohen coding” allows us to prove a classwise connection
between P-measurability and Baire property. Beyond its own interest, the technique used will also permit us
to apply it in other specific cases that we will summarize along the paper, in particular to answer a question
connected to the diagram of regularity properties at uncountable investigated in [6]. Recall that a family of sets
Γ is well-sorted if it is closed under continuous pre-images and Γ(P) stands for “every set in Γ is P-measurable”.

Proposition 3.1 Let X be a set of size ≤ κ endowed with the discrete topology, X κ the topological product
space equipped with the bounded topology (i.e., the topology generated by [t] := {x ∈ X κ : x ⊇ t} with
t ∈ X<κ), P be a < κ-closed tree-forcing notion defined on X<κ. Assume there exist two maps ϕ : X κ → 2κ

and ϕ∗ : X<κ → 2<κ such that:

a) ϕ is continuous,

b) ∀i < κ ϕ(x)�i = ϕ∗(x�i),

c) ∀q ∈ P ∀s ∈ 2<κ ∃σ ∈ q such that ϕ∗(σ) ⊇ ϕ∗(stem(q))as.

Then Γ(P) implies Γ(C).
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We note that the second condition implies ϕ[[p]] ⊆ [ϕ∗(stem(p))] for each p ∈ P. The third condition
intuitively means that the map ϕ∗ is below any condition almost surjective. The key step for the proof is the
following lemma.

Lemma 3.2 Let P, ϕ, ϕ∗ be as in the Proposition and X ⊆ 2κ. Define Y := ϕ−1[X]. Assume there is q ∈ P
such that Y ∩ [q] is P-comeager in [q]. Then X ∩ [ϕ∗(stem(q))] is comeager in [ϕ∗(stem(q))].

P r o o f. We are assuming Y ∩ [q] is P-comeager, for some q ∈ P. This implies that there is a collection
{Aα : α < κ ∧ Aα is P-open dense in [q]} such that

⋂
αAα ⊆ [q] ∩ Y . W.l.o.g. assume Aα ⊇ Aβ , whenever

α < β < κ. Let t = ϕ∗(stem(q)). We want to show that ϕ[Y ] ∩ t = X ∩ t is comeager in [t] i.e., we want to
find {Bα : α < κ} open dense sets in [t] such that

⋂
αBα ⊆ X ∩ [t]. Given σ ∈ κ<κ we recursively define on

the length of σ a set {qσ : σ ∈ κ<κ} ⊆ P with the following properties:

1.: q〈〉 = q,

2.: ∀σ ∈ κ<κ
⋃
i[ϕ
∗(stem(qσai))] is open dense in [ϕ∗(stem(qσ))],

3.: ∀σ ∈ κ<κ∀i ∈ κ ([qσai] ⊆ A|σ| ∧ qσai ≤ qσ).

Assume we are at step α = |σ|. Fix σ ∈ κα arbitrarily and then put tσ = ϕ∗(stem(qσ)). We first make sure
that 2. holds. Therefore let {si : i < κ} enumerate 2<κ. By condition c) from Proposition 3.1 we can find
pi ≤ qσ such that ϕ∗(stem(pi)) ⊇ tσ

asi. Since each Aα is P-open dense in [q] we can find for each i < κ an
extension qi ≤ pi such that [qi] ⊆

⋂
α≤|σ|Aα. This ensures that also 3. holds and we put qσai := qi. At limit

steps λ, we put for every σ ∈ κλ, qσ :=
⋂
β<|σ| qβ . Finally we put Bα :=

⋃
{ϕ[[qσ]] : σ ∈ κα}. We have to

check that
⋂
αBα ⊆ X ∩ [t]. Since t = stem(q) and qσ ≤ q we get ϕ[[qσ]] ⊆ ϕ[[q]] ⊆ [ϕ∗(t)] and therefore

Bα ⊆ [t] for each α ∈ κ. On the other hand by construction of Bα+1 we know ϕ−1[Bα+1] ⊆ Aα and hence
ϕ−1[

⋂
αBα] ⊆

⋂
αAα which implies

⋂
αBα ⊆ X .

Proof of the proposition. Let X ∈ Γ be given and put Y := ϕ−1[X]. Then also Y ∈ Γ, since Γ is well-sorted
and ϕ is continuous. We now use the lemma to show that for every t ∈ 2<κ there exists t′ ⊇ t such that X ∩ [t′]
is meager or X ∩ [t′] is comeager.

Fix t ∈ 2<κ arbitrarily and pick p ∈ P such that ϕ∗(stem(p)) ⊇ t. By assumption Y is P-measurable, and so:

• in case there exists q ≤ p such that Y ∩ [q] is P-comeager; put t′ := ϕ∗(stem(q)). By the lemma above,
X ∩ [t′] is comeager in [t′];

• in case there exists q ≤ p such that Y ∩ [q] is P-meager, then apply the lemma above to the complement of
Y , in order to get X ∩ [t′] be meager in [t′], with t′ := ϕ∗(stem(q)).

By the remark directly after Definition 1.1 this suffices to complete the proof.

Proposition 3.3 Let Γ be a well-sorted family of sets. Then

Γ(T)⇒ Γ(C).

P r o o f. Consider H := {x ∈ 3ω : ∃∞n x(n) = 2}. As we remarked right above Lemma 2.5, H is
T-comeager. Thus we have for each set X ⊆ 3ω:

X is T-measurable ⇔ X ∩H is T-measurable.

Since we are only concerned with T-measurability we can work with the setH instead of the whole space 3ω . We
want to apply Proposition 3.1. For an element x ∈ H let Ax = {ni : i < ω} be an increasing enumeration of
all n ∈ ω such that x(n) = 2. This is by definition of H an infinite set. Using this notation we define a function
ϕ : H → 2ω via:

ϕ(x)(i) =

{
0 if |{j < ω : ni < j < ni+1 ∧ x(j) = 1}| is even
1 else.
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Note that ϕ is surjective but not injective and observe that ϕ induces a map ϕ∗ : 3<ω → 2<ω such that for each
x ∈ H and i < ω we have ϕ(x)�i = ϕ∗(x�ni). We have to check that a), b) and c) from Proposition 3.1 are
satisfied. Condition b) is clear. For condition a) we have to show that the pre-image of a basic open set in 2ω is
open in H (regarding the induced topology of 3ω on H). Therefore let s ∈ 2<ω be given. It follows

ϕ−1[[s]] =
⋃

t∈3<ω,ϕ∗(t)=s

[t] ∩H

which is a union of basic open sets in H .
So we are left to show that c) holds as well. Therefore fix q ∈ T and s ∈ 2<ω . Let Aq = {ni : i < ω} be
the corresponding set of splitting levels and s = (i1, . . . , ik). Then we can lenghten stem(q) in order to have
the parity of 1s between two subsequent 2 according to the corresponding ij , that means we find t ∈ q such that
ϕ∗(t) ⊇ ϕ∗(stem(q))as.

So we are able to apply Proposition 3.1 and get Γ(T)⇒ Γ(C).

4 Some results for the uncountable case

In this section we investigate some issues concerning Table 2. We will always assume that κ is an uncountable
regular cardinal such that κ = 2<κ.

Definition 4.1 (Club κ-Miller forcing MClub
κ ) A tree p ⊆ κ<κ is called κ-Miller tree if it is pruned, < κ-

closed and

(a) for every s ∈ p there is an extension t ⊇ s in p such that succ(t, p) ⊆ κ is club. Such a splitting node t is
called club-splitting.

(b) for every x ∈ [p] the set {α < κ : x�α is club-splitting } is club.

Remark: Both (a) and (b) ensure that MClub
κ is a < κ-closed forcing. The set of trees that consist of nodes that

are either club-splitting or not splitting is a dense subset of MClub
κ .

The following result highlights the connection with κ-Cohen reals. We remark that a similar result (though in
a different context, dealing with a version of Mκ satisfying (a) but not (b)) has been proven by Mildenberger and
Shelah in [12].

Proposition 4.2 Let Γ be a well-sorted family of subsets of κ-reals. Then Γ(MClub
κ )⇒ Γ(C).

P r o o f. We introduce a coding function ϕ∗ : κ<κ → 2<κ. Therefore fix a κ sized family {St ⊆ κ : t ∈
2<κ} of pairwise disjoint stationary sets such that the union of all St’s covers κ (this is possible since we assume
κ = 2<κ). Let σ ∈ κ<κ. We define ϕ∗(σ) = ti0

ati1
a . . .a tiα

a . . . , with σ(α) ∈ Stiα for all α < |σ|. Then ϕ∗

induces a function ϕ : κκ → 2κ via ϕ(x)�α := ϕ∗(x�α).
It is easy to see that such maps ϕ and ϕ∗ satisfy the three conditions in Proposition 3.1; a) and b) are clear, so

we only check condition c). So fix q ∈MClub
κ and t ∈ 2<κ. Let τ = stem(q). Since succ(τ, q) ⊆ κ is club and

St is stationary, we can pick β ∈ St ∩ succ(τ, q). Then τaβ ∈ q and ϕ∗(τaβ) = ϕ∗(τ)at. Using Proposition
3.1 we obtain Γ(MClub

κ )⇒ Γ(C) as desired.

Remark 4.3 The map ϕ we used in Proposition 4.2 allows us to read off a Cohen κ-real from the MClub
κ -

generic. Indeed, let {St ⊆ κ : t ∈ 2<κ}, ϕ∗ and ϕ be as above. Let ż be the MClub
κ -name for the generic

κ-real and ċ the MClub
κ -name such that 
MClub

κ
ċ = ϕ(ż) ∈ 2κ. We claim that ċ is κ-Cohen in every generic

extension. Therefore fix p ∈ MClub
κ and let cp ∈ 2<κ be the initial part of ċ decided by p so cp = ϕ∗(stem(p)).

Let t ∈ 2<κ be given. We want to find q ≤ p such that q 
 cp
at ⊆ ċ. Since stem(p) is club-splitting we can find

an α0 ∈ St ∩ {α < κ : stem(p)aα ∈ p} and take q to be p�stem(p)aα0 i.e. stem(q) extends stem(p)aα0.
This implies that ϕ∗(stem(q)) ⊇ cpat and therefore q 
 cp

at ⊆ ċ as demanded.
We also remark that the fact that MClub

κ adds Cohen κ-reals is not new and it was proven in [4], even if the
authors use a different coding map.
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Differently from T, the Cohen-like behaviour of the MClub
κ -generic does not have an impact on the ideals, as

shown in the next result.

Lemma 4.4 NMClub
κ

= IMClub
κ

P r o o f. The proof is rather standard. We report a sketch of it here just for completeness. Given {Di : i < κ}
a family of MClub

κ -open dense sets and p ∈ MClub
κ we simply construct a fusion sequence {qi : i < κ} so that

q :=
⋂
i<κ qi ≤ p, for every i < κ, [qi] ⊆ Di, and for every j < i, qi ≤j qj , i.e., qi ≤ qj and for every

j ≤ i, Splitj(qi) = Splitj(qj). This can be done via an easy recursive construction: at limit steps i, simply put
qi :=

⋂
j<i qj ; at successor step i + 1, for every t ∈ Spliti(qi), pick p(t) ≤ qi�t such that p(t) ∈ Di, and then

put qi+1 :=
⋃
{p(t) : t ∈ Spliti(qi)}.

Definition 4.5 (κ-Mathias forcing Rκ) A κ-Mathias condition is a tuple (s,A), where s ∈ [κ]<κ, A ∈ [κ]κ

such that sup(s) < min(A). The partial order on Rκ is defined by:

(s,A) ≤ (t, B)⇔ t ⊆ s,A ⊆ B and t \ s ⊆ A.

Lemma 4.6 NRκ 6= IRκ

P r o o f. We first clarify what is meant with NRκ : X ⊆ [κ]κ is called Rκ-nowhere dense if for each (s,A) ∈
Rκ there is a stronger condition (t, B) ≤ (s,A) such that

∀x ∈ X∀y ∈ [B]κ(x 6= t ∪ y). (2)

We define an equivalence relation on the set of countably infinite subsets of κ. For a, b ∈ [κ]ω let a ∼ b :⇔
|a4b| < ω. We fix a system of representatives. For a ∈ [κ]ω we denote the representative of {b ∈ [κ]ω : b ∼ a}
with ã. Then we define a coloring function C : [κ]ω → {0, 1} as follows:

C(a) =

{
0 if |a4ã| is even
1 else.

We can identify x ∈ [κ]κ with it’s increasing enumeration χ : κ → κ given by χ(ξ) := min{x \
⋃
α<ξ χ(α)}.

Let {αi : i < κ} enumerate the limit ordinals < κ. For x ∈ [κ]κ and i < κ we define the countable set
bxi := {x(ξ) : αi < ξ < αi+1} ⊆ κ.

Claim: The set Xi := {x ∈ [κ]κ : ∀j > i C(bxj ) = 0} is Rκ-nowhere dense for all i < κ, but their union is not.

Proof of the claim. Let (s,A) be a κ-Mathias condition and i < κ be given. Fix j > i. Then A ⊆ κ is of size κ.
By removing at most one element of A, we find A′ ⊆ A such that C(bA

′

j ) = 1. We extend s with the first αj+1

elements of A′ to get t := s∪ {A′(ξ) : ξ ≤ αj+1} ∈ κ<κ. Now we can shrink A′ to B := A′ \ (A′(αj+1) + 1)
in order to obtain a κ-Mathias condition (t, B) ≤ (s,A) fulfilling the requirement (2). This proves the claim.

However the union X :=
⋃
i<κXi can not be Rκ-nowhere dense. In fact, let (s,A) be a κ-Mathias condition.

We can always find for i > otp(s) a subset B ⊆ A of size κ such that C(bBj ) = 0, for all j > i and hence (2) is
false for Xi and (s,B).

(The coloring introduced above requires AC. However the result needs not AC, as we can also consider another
kind of coloring, as noted by Wohofsky and Koelbing during the writing of [7]: fix S ∈ [κ]κ stationary and co-
stationary and define the coloring C : [κ]ω → {0, 1} by C(a) := 0 iff sup a ∈ S.)

Remark 4.7 Proposition 3.1 also applies for P ∈ {Dκ,Eκ}. The coding function ϕ : κκ → 2κ we need in
this case is given by ϕ(x)(i) = x(i) mod 2, similarly to the ω-case. It is straightforward to prove that such a ϕ
(and the natural corresponding ϕ∗) satisfies the required properties of Proposition 3.1.

st
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