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Abstract. Total social welfare relations satisfying Pareto and equity
principles on infinite utility streams has revealed a non-constructive na-
ture. In this paper we study more deeply the needed fragment of AC.
In particular, we show that such relations need a strictly larger frag-
ment of AC than non-Lebesgue and non-Ramsey sets. We also prove a
connection with the Baire property, answering Problem 11.14 posed in
[4].

1. Introduction and basic definitions

In recent years, various papers have shown some interplay between the-
oretical economics and mathematical logic. More specifically, some connec-
tions have risen between social welfare relations on infinite utility streams
and descriptive set theory. In particular the following results have been
proven:

• in [15] Lauwers proves that the existence of a total social welfare
relation satisfying Pareto and finite anonymity implies the existence
of a non-Ramsey set.
• in [20] Zame proves that the existence of a total social welfare relation

satisfying Pareto and finite anonymity implies the existence of a non-
Lebesgue measurable set.

(For a precise definition of these combinatorial concepts from economic the-
ory see Definition 1 and 2 below.)

So in terms of set-theoretical considerations, these results mean that the
existence of these specific relations satisfying certain combinatorial prin-
ciples from economic theory are connected to a fragment of the axiom of
choice, AC. As a consequence, from the set-theoretical point of view, it
is natural and interesting to understand more deeply the exact fragment
of AC they correspond to, in particular in connection with other objects
coming from measure theory, topology and infinitary combinatorics, ex-
tensively studied in the set-theoretic literature (for a detailed overview see
[10],[11],[5]). More precisely we provide negative answers to the following
questions (which are the reverse implications of Lauwers and Zame’s results):
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Q1: Does the existence of a non-Lebesgue measurable set imply the ex-
istence of a total social welfare relation satisfying Pareto and finite
anonymity?

Q2: Does the existence of a non-Ramsey set imply the existence of a total
social welfare relation satisfying Pareto and finite anonymity?

Our negative answers imply that total social welfare relations satisfying
Pareto and finite anonymity need a strictly larger fragment of AC than non-
Lebesgue measurable and non-Ramsey sets. The main tool from forcing
theory we are going to use is Shelah’s amalgamation. A detailed approach
and excellent exposition of this forcing tool is given in [12]; in the Appendix
at the end of this paper we give a brief introduction in as much detail as
needed for our purpose. In the proof we give to negatively answer Q1, we
provide an answer to [4, Problem 11.14].

Since the motivation of this paper comes from the study of some com-
binatorial concepts studied in economic theory, we briefly remind the basic
notions about social welfare relations and infinite utility streams, in as much
detail as required for our scope.

We consider a set of utility levels Y (or utility domain) endowed with
some topology and totally ordered, and we call X := Y ω the correspond-
ing space of infinite utility streams, endowed with the product topology.
Given x, y ∈ X we write x ≤ y iff ∀n ∈ ω(x(n) ≤ y(n)), and x < y iff
x ≤ y ∧ ∃n ∈ ω(x(n) < y(n)). Furthermore we set F := {π : ω → ω :
finite permutation}, and we define, for x ∈ X, fπ(x) := 〈x(π(n)) : n ∈ ω〉.

We say that R ⊆ X ×X is a social welfare relation (SWR) on X iff R is
reflexive and transitive.

Definition 1. A social welfare relation R is called Paretian (P) (or satisfy-
ing Pareto principle) iff

∀x, y ∈ X(x ≤ y ⇒ xRy)
∀x, y ∈ X(x < y ⇒ xRy ∧ ¬yRx).

This property is sometimes referred to with the term “strongly Paretian”,
due to other two concepts which have also been studied in the economic
literature: intermediate Paretian relations obtained by replacing the second
condition with (x ≤ y ∧ ∃∞n(x(n) < y(n)) ⇒ xRy ∧ ¬yRx), and weakly
Paretian relations by using (x ≤ y ∧ ∀n(x(n) < y(n)) ⇒ xRy ∧ ¬yRx). In
our paper we focus on the original Pareto principle as in Definition 1.

Beyond the Pareto principle, the combinatorial concepts studied from
theoretical economists include also the following equity principle.

Definition 2. A social welfare relation R is called finitely anonymous (FA)
(or satisfying finite anonymity) iff for every π ∈ F we have fπ(x) ∼ x.
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Throughout the paper, we use the following notation:

FAP :=“There exists a total SWR satisfying FA and P”
NL :=“There exists a non-Lebesgue (measurable) set”
NR :=“There exists a non-Ramsey set”
NB :=“There exists a non-Baire set”

Remark 3. The nature of these social welfare relations depends on the set
theoretic structure of Y . In our paper, we will mainly focus on the case
Y := {0, 1} endowed with the discrete topology or Y := [0, 1] endowed with
the standard archimedian topology. We also provide more comments on the
study with other utility domains in the last section about the concluding
remarks.

Remark 4. The study on infinite populations and these combinatorial prin-
ciples has been rather extensively developed in the economic literature.
Summarizing the reasons and analysing the intepretations in the context
of economic theory is away from the aim of this paper, which should be
meant as a contribution to a set-theoretic question coming from the study
of combinatorial objects introduced in economic theory, rather than an ef-
fective application of set theory to economic theory. The reader interested
in a more economic background may consult the following selected list of
papers: [2], [3], [7], [6], [17], [15], [16], [20].

On the forcing theoretic side, throughout the paper we use the following
well-known forcing notions:

• Random forcing B := {C ⊆ 2ω : C closed ∧ µ(C) > 0}, where µ
is the standard Lebesgue measure on 2ω. The order is given by:
C ′ ≤ C ⇔ C ′ ⊆ C.
• Mathias forcing M consisting of pairs (s, x) such that x ∈ [ω]ω,
s ∈ [ω]<ω and max s < min x, ordered by (t, y) ≤ (s, x) iff t ⊇ s,
t�|s| = s and y ⊆ x. Moreover we denote

[s, x] := {y ∈ [ω]ω : y ⊃ s ∧ y�|s| = s ∧ y ⊆ x}.

• Given κ > ω cardinal, let

Fn(ω, κ) := {f : f is a function∧|dom(f)| < ω∧dom(f) ⊆ ω∧ran(f) ⊆ κ},

ordered by: f ′ ≤ f ⇔ f ′ ⊇ f . Note Fn(ω, κ) is the standard poset
adding a surjection fG : ω → κ, i.e., the forcing collapsing κ to ω.

Finally we remind that we are also going to use a tool called amalgama-
tion introduced by Shelah in the 1980s to build very homogeneous Boolean
algebras. More details and references about it will be given in section 3 and
in the Appendix.
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2. SWRs, Baire property and non-Lebesgue sets

In this section we investigate the connection between total SWRs satis-
fying Pareto and finite anonymity, and non-Baire sets, answering Problem
11.14 posed in [4]. Remind that, in a topological space X, a subset A ⊆ X
satisfies the Baire property (or A is a Baire set) iff there is O ⊆ X open
such that A

a
O is meager.

We study the case X := [0, 1]ω. In order to show that FAP ⇒ NB, we
start with a basic example. Let � (usually called Suppes-Sen principle) be
defined as follows: for every x, y ∈ X, we say

x� y iff there exists π ∈ F such that fπ(x) > y.

x ∼ y iff there exists π ∈ F such that fπ(x) = y.

Let supp(y) := {n ∈ ω : y(n) 6= 0} denote the support of y.
It is clear that � is a SWR satisfying P and FA.

Remark 5. The Suppes-Sen principle is rather coarse from the topological
point of view, as many pairs x, y ∈ X are incompatible w.r.t. �. More
precisely, A := {(x, y) ∈ X ×X : x 7 y ∧ y 7 x ∧ x 6∼ y} is comeager.

Let A′ be the complement of A. We show that A′ is meager. First
partition A′ into three pieces: E := {(x, y) ∈ X×X : x� y}, D := {(x, y) ∈
X × X : y � x} and C := {(x, y) ∈ X × X : y ∼ x}. We prove that E is
meager and then note that similar arguments work for D and C as well. Fix
y ∈ X so that supp(y) is infinite (i.e., y is not eventually 0) and consider
Ey := {x ∈ X : (x, y) ∈ E}. Let Hy := {x ∈ X : x > y}. Note that
Ey :=

⋃
π∈F H

fπ(y). Since F is countable it is enough to prove that for each
π ∈ F , Hfπ(y) is meager. Actually we show that Hy is nowhere dense, for
every y ∈ X with |supp(y)| = ω. Indeed, fix U :=

∏
n∈ω Un ⊆ X basic open

set, and let k ∈ ω be sufficiently large that for all n ≥ k, Un = [0, 1]. Then
pick n∗ > k such that n∗ ∈ supp(y) and pick U ′ ⊆ U so that: ∀n 6= n∗,
Un = U ′n and U ′n∗ := [0, y(n∗)). Then it is clear that U ′ ∩ Hy = ∅. This
concludes the proof that each Hy is nowhere dense, when |supp(y)| = ω.
Note that if π ∈ F we get |supp(fπ(y))| = ω as well, and so Hfπ(y) is
nowhere dense too.

By Ulam-Kuratowski theorem, we conclude the proof if we show that the
set {y ∈ X : |supp(y)| = ω} is comeager. So let B be the complement of
such a set, i.e., B consists of those y that are eventually 0. Define Bn :=
{y ∈ B : |supp(y)| ≤ n}. Clearly B :=

⋃
n∈ω Bn. Moreover each Bn in

nowhere dense. Indeed, let U be a basic open set and pick k > n so that for
all m ≥ k, Um = [0, 1]. Then define U ′ ⊆ U by replacing the kth cartesian
piece of U with (0, 1]. It is clear that U ′ ∩ Bn = ∅. Hence, we have proved
that for comeager many y, Ey is meager, and that implies E is meager by
Kuratowski-Ulam theorem.

Under this point of view the Suppes-Sen principle can then be consid-
ered rather “poor”, as we aim at finding SWRs able to compare as many
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elements as possible. Part 1 of the following proposition shows that this is
unfortunately not only specific for Suppes-Sen principle, but it holds for any
“regular” SWR satisfying FA and P. Moreover, in part 2 we show that when
assuming FAP, the price to pay is to get a set without Baire property. This
answers Problem 11.14 posed in [4]. In the following we consider X = [0, 1]ω.
Note that the existence of a SWR on [0, 1]ω satisfying FA and P implies the
existence of a total SWR on 2ω satisfying FA and P ([15, pg.37]).

Proposition 6. Let Y = [0, 1] and X := Y ω. Then the following hold:
(1) Let � be a SWR satisfying FA and P on X, E := {(x, y) ∈ X ×X :

x � y} and D := {(x, y) ∈ X ×X : y � x}. If both E and D have
the Baire property, then E ∪D is meager.

(2) Let � be a total SWR satisfying FA and P on X, and let E,D as
above. Then either E or D does not have the Baire property.

Proof. Under the assumption E,D both satisfying the Baire property, we
show that E is meager, and remark that the argument for D is essentially
the same. Since we assume E has the Baire property, we can find a Borel set
B ⊆ E such that E\B is meager; moreover for every π, π′ ∈ F we can define
B(π, π′) := {(fπ(x), fπ′(y)) : (x, y) ∈ B}. Put B∗ :=

⋃
{B(π, π′) : π, π′ ∈ F}

and note that B∗ ⊆ E, as E is closed under finite permutations. Moreover,
E \B∗ is meager too. Let I0 := {y ∈ X : B∗y is meager} and I1 := {y ∈ X :
B∗y is comeager}. Note that each B∗y is by definition invariant under finite
permutations, i.e., x ∈ B∗y ⇔ fπ(x) ∈ B∗y , where π ∈ F .

Hence by the [13, Theorem 8.46] with G being the group on X induced
by finite permutations, we have that each B∗y is either meager or comeager,
and hence I0 ∪ I1 = X. We also observe that both I0 and I1 are invariant
under π ∈ F . In fact, it is straightforward to check that if π ∈ F and B∗y
is meager, then B∗fπ(y) is meager too. So, if I1 is comeager, by Kuratowski-
Ulam theorem we get E is comeager. But since an analogous argument could
be done for D too, we would have that also D is comeager, but E ∩D = ∅,
which is a contradiction. As a consequence, we get I0 is comeager, which
implies E (and D as well) is meager.

2. Note that in this case the SWR is total and so, if E and D both satisfy
the Baire property, the set A := {(x, y) ∈ X×X : x ∼ y} is comeager. Thus,
by Kuratowski-Ulam’s theorem there is y ∈ X such that Ay is comeager.
Pick 0 < r < 1

2 and define

H := [0, 1− r]×
∏
i∈ω

[0, 1],

and define the injective function φ : X ′ → X such that i(x(0)) := x(0) + r.
Note that

φ[H] := [r, 1]×
∏
n∈ω

[
0, 1],
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Note also that for every x ∈ H, φ(x) � x by Pareto, and so in particular
x ∼ y ⇔ x 6∼ φ(y). Hence, we have the following two mutually contradictory
consequences.

• On the one side, H ∩ Ay ∩ φ[H ∩ Ay] = ∅; indeed if there exists
z ∈ H∩Ay∩φ[H∩Ay], then there is x ∈ H∩Ay such that z := φ(x);
then on the one hand we have z ∈ Ay which gives z ∼ y, but on the
other hand we have x ∈ H ∩ Ay that in turn gives x ∼ y and so
together with x ≺ φ(x) = z we would get y ≺ z; contradiction.
• On the other side, H ∩ Ay ∩ φ[H ∩ Ay] cannot be meager, since
H ∩ φ[H] is a non-empty open set, H ∩ Ay is comeager in H and
φ[H ∩Ay] is comeager in φ[H].

�

Let N be Shelah’s model constructed in [19], where every set of reals
has the Baire property. Note that such a model is obtained via Shelah’s
amalgamation and it does not need the use of inaccessible cardinals. Since
again in [19] it is shown that to get a model where every set of reals is
Lebesgue measurable we need an inaccessible, we can then deduce that in
N there is a set that is not Lebesgue measurable.

Corollary 7. Let N be Shelah’s model constructed in [19]. Then N |=
¬FAP ∧NL. (Hence the answer to Q1 is negative.) As a consequence, we
furthermore obtain

Con(ZF ∧ ¬FAP)⇔ Con(ZFC).

Proof. In N every set of reals has the Baire property and then, by Propo-
sition 6, there is no total SWR satisfying P and FA. But in N there is a
non-Lebesgue measurable set. �

3. SWRs and non-Ramsey sets

We consider the case of utility domain Y = {0, 1}, and thus X = 2ω. In
[15], Lauwers proves the a total SWR satisfying FA and P on utility domain
Y = {0, 1} implies the existence of a non-Ramsey set, i.e. FAP ⇒ NR.
Remind that a set X ⊆ [ω]ω is non-Ramsey iff for every F ∈ [ω]ω one has
[F ]ω 6⊆ X and [F ]ω ∩X 6= ∅. Note that we can identify in a standard way
[ω]ω with 2ω and so the definition makes perfectly sense for subsets of 2ω as
well.

In this section we answer negatively to Q2. More precisely we are going
to prove that the implication above does not reverse, i.e. NR 6⇒ FAP,
and thus total SWRs satisfying P and FA need a strictly larger fragment
of AC than non-Ramsey sets. For doing that we also need Zame’s result
[20] proving that the existence of a SWR satisfying FA and P implies the
existence of a non-Lebesgue set, in other words ¬NL⇒ ¬FAP.

Theorem 8. There is a model N for ZF satisfying DC such that
N |= NR ∧ ¬FAP
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Hence the answer to Q2 is negative.
The model N is going to be the inner model of a certain forcing extension

that we are going to define in the proof of Theorem 8 below. The key idea to
obtain such a forcing-extension is to use Shelah’s amalgamation over random
forcing with respect to a certain name Y for sets of elements in 2ω in order
to get a complete Boolean algebra B such that, if G is B-generic over V , in
V [G] the following hold:

(1) every subset of 2ω in L(R, {Y }) is Lebesgue measurable
(2) Y is non-Ramsey.

Hence, we obtain that in L(R, {Y })V [G] every subset of 2ω is Lebesgue mea-
surable (and so by Zame’s result there cannot be any total SWR satisfying
FA and P), but there is a non-Ramsey set.

Shelah’s amalgamation ([19]) is the main tool we need for our forcing
construction. Since it is a rather demanding machinery, we refer the reader
to the Appendix for a more detailed approach and an exposition of the
main properties. The reader already familiar with Shelah’s amalgamation
can proceed with no need of such Appendix.

Before going to the detailed and technical proof, we just give a short
overview of the key-idea. Starting from a Boolean algebra B, two complete
subalgebras B0, B1 l B isomorphic to the random algebra with φ isomor-
phism between them, the amalgamation process provides us with the pair
(B∗, φ∗) such that B l B∗ and φ∗ ⊇ φ such that φ∗ is an automorphism
of B∗. We will denote this amalgamation process by Amω(B,φ), so that
B∗ = Amω(B,φ).

Since the process itself generates more and more copies of random alge-
bras, we have to iterate this process as long as we run out all of the copies
of such random algebras. For doing that a recursion of length κ inaccessi-
ble will be sufficient (and necessary to ensure the final construction satisfy
κ-cc).

The idea to obtain 1 and 2 above is based on the following main parts:
(a) The Boolean algebra B is built via a recursive construction, alternat-

ing the amalgamation, iteration with Levy collapse, iteration with
Mathias forcing and picking direct limits at limit steps.

(b) The set Y is also recursively build by carefully adding Mathias reals
cofinally often in order to get a non-Ramsey set.

(c) In order to obtain that all sets of reals in L(R, {Y }) be Lebesgue
measurable, we have to amalgamate over random forcing, and we also
need to recursively close Y under the isomorphisms between copies
of the random algebras generated by the amalgamation process, in
order to get 
 φ[Y ] = Y , for every such isomorphism φ.

In particular to get (c) the algebra B we are going to construct is going to
satisfy (B, Y )-homogeneity, i.e., for every pair of random algebras B0,B1lB
with φ : B0 → B1 isomorphism, there exists φ∗ ⊇ φ automorphism of B such
that 
B φ∗[Y ] = Y . (Roughly speaking: any isomorphism between copies
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of random algebra can be extendend to an automorphism which fixes Y ).
See [12, Theorem 6.2.b] for a proof that (B, Y )-homogeneity implies that all
sets in L(R, {Y }) are Lebesgue measurable.

We now see the construction of the complete Boolean algebra B and the
proof of Theorem 8 in detail.

Proof of Theorem 8. Start from a ground model V we are going to recur-
sively define {Bα : α < κ} sequence of complete Boolean algebras such that
BαlBβ, for α < β, and {Yα : α < κ} ⊆-increasing sequence of sets of names
for reals, and then put B := limα<κBα and Y :=

⋃
α<κ Yα. The construc-

tion follows the line of the one presented in [12], even if it sensitively differs
in the construction of the set Y , which in this framework is forced to be a
non-Ramsey set, instead of a set without the Baire property. We also use
the forcing Fn instead of the amoeba for measure, as it also serves the scope
of collapsing the additivity of the null ideal and to ensure the inaccessible κ
be gently collapsed to ω1 in the forcing-extension. We start with B0 = {0}
and Y0 = ∅.

(1) In order to obtain the (B, Ẏ )-homogeneity we use a standard book-
keeping argument to hand us down all possible situations of the
following type: if Bα l B′ l B and Bα l B′′ l B are such that Bα
forces (B′/Bα) ≈ (B′′/Bα) ≈ B and φ0 : B′ → B′′ an isomorphism
s.t. φ0�Bα = IdBα , then there exists a sequence of functions in order
to extend the isomorphism φ0 to an automorphism φ : B → B, i.e.,
∃〈αη : η < κ〉 increasing, cofinal in κ, with α0 = α, and ∃〈φη : η < κ〉
such that
• for η > 0 successor ordinal, Bαη+1 = Amω(Bαη , φη−1), and φη

be the automorphism on Bαη+1 generated by the amalgamation;
• for η limit ordinal, let Bαη = limξ<η Bαξ and φη = limξ<η φξ, in

the obvious sense;
• for every η < κ, we have Bαη+1 lBαη+1 .

In order to fix the set of names by each automorphism φη, one then
sets
• successor case η > 0:

Bαη+1 
 Yαη+1 := Yαη ∪ {φjη(ẏ), φ−jη (ẏ) : ẏ ∈ Yαη , j ∈ ω},

• limit case: Bαη 
 Yαη :=
⋃
ξ<η Yαξ .

(2) In order to get Y being non-Ramsey, for cofinally many α’s, put
Bα+1 = Bα ∗ Ṁ and

Bα+1 
 Yα+1 := Yα ∪ {ẏ(s,x) : (s, x) ∈M},

where ẏ(s,x) is a name for a Mathias real over V Bα such that (s, x) 

s ⊂ ẏ(s,x) ⊆ x.

(3) For cofinally many α’s pick a cardinal λα < κ such that Bα 
 λα >
ω, put Bα+1 = Bα ∗ Fn(ω, λα), and let Bα+1 
 Yα+1 := Yα, where
Fn(ω, λα) is the forcing adding a surjection Fα : ω → λα.
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(4) For any limit ordinal, put Bλ = limα<λBα and Bλ 
 Yλ =
⋃
α<λ Yα.

Let G be B-generic over V . As mentioned above, the proof of “every
set of reals in L(R, Y ) is Lebesgue measurable” is a standard Solovay-style
argument, and can be found in [12]. The only difference we adopt is the use
of Fn(ω, λα). i.e. the poset “collapsing” λα to ω instead of the amoeba for
measure. The property needed for our purpose, which is to turn the union
of all Borel null sets coded in the “ground model” V [G�α + 1] into a null
set, is fulfilled by Fn(ω, λα) as well, i.e.

Fn(ω, λα) 

⋃
{Nc : c is a Borel code for a null set in V [G�α+ 1]} is null,

where Nc ⊆ 2ω is the Borel null set coded by c.
What is left to show is that

(1) B 
 “Y is non-Ramsey”.
For proving that, pick arbitrarily (s, x) ∈M; we have to show

B 
 Y ∩ [s, x] 6= ∅ and [s, x] 6⊆ Y.
For the former, Let ˙(s, x) be a B-name for a Mathias condition. By κ-cc

and part (2) of the recursive construction, there is α < κ such that ˙(s, x) is
a Bα-name, Bα+1 = Bα∗Ṁ and Bα+1 
 Yα+1 = Yα∪{ẏ(s,x) : (s, x) ∈MBα}.
Consider ẏ(s,x) name for a Mathias real over V Bα such that Bα+1 
 ẏ(s,x) ∈
[s, x]. Thus,

B 
 ẏ(s,x) ∈ Y ∩ [s, x].
On the other hand, by part (3) of the construction, there is also α < κ,

such that ˙(s, x) is a Bα-name, Bα+1 = Bα ∗ Fn(ω, λα) and Bα+1 
 Yα+1 =
Yα. Let ẏ be a Bα+1-name for a Mathias real over V Bα such that B 
 ẏ ∈
[s, x]. Obviously, B 
 ẏ /∈ Yα (since “the real y is added at stage α + 1”),
and hence

B 
 ẏ ∈ [s, x] \ Yα+1,

since B 
 Yα+1 = Yα. So it is left to show that also for every β > α + 1,
B 
 y /∈ Yβ \Yα, which means, roughly speaking, y cannot fall into Y at any
later stage β > α+ 1. For proving that we show the following Claim 9. Fix
the notation: given x ∈ 2ω, we denote by fx the increasing enumeration of
the set {n ∈ ω : x(n) = 1}. It is well-known (and straightforward to check)
that if x is a Mathias real over V , then fx is dominating over V .
Claim 9. For β < κ, β > α+ 1 and ẏ ∈ Yβ \ Yα+1, one has

B 
 “fẏ is dominating over V Bα+1”.
For β limit the proof is trivial. For β + 1, we have two cases:
Case as in part (2) of the recursive construction, i.e. Yβ+1 = Yβ ∪{ẏ(s,x) :

(s, x) ∈M}. In this case ẏ has to be a Mathias real over V Bα+1 and therefore
fẏ is dominating over V Bα+1 .

Case as in part (1) of the construction, i.e.
Bβ+1 
 Yβ+1 := Yβ ∪ {φj(ẏ), φ−j(ẏ) : ẏ ∈ Yβ, j ∈ ω},
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where φ’s are the associated automorphisms generated by the amalgamation.
The aim is to show that the property of “being dominating” is preserved

through the construction unfolded in part (1), both by the amalgamation
process and by iteration of random forcing. More precisely, we need the
following lemma.

Lemma 10. Let η > 0 be a successor ordinal. Let B′, B′′ l Bαη and ẋ ∈
V Bαη ∩ 2ω such that

Bαη 
 “ fẋ is dominating over both V B′ and V B′′”,

and ψ : B′ → B′′ isomorphism.
Then, for every j ∈ ω,

Bαη+1 
 “f
φjη(ẋ) and f

φ−jη (ẋ) are dominating over V Bαη ”.

where Bαη+1 = Amω(Bαη , ψ), and φη is the automorphism extending ψ,
generated by the amalgamation.

Sublemma 1 (Preservation by one-step amalgamation). Let B,B1, B2, φ0,
e1, e2 as in the Appendix and ẋ a B-name for an element of 2ω such that
B forces fẋ is dominating over V B1 and V B2. Then

(2) Am(B,φ0) 
 “fe1(ẋ) is dominating over V e2[B]”.

(And analogously Am(B,φ0) 
 “ fe2(ẋ) is dominating over V e1[B] ”.)

Proof of Sublemma 1. By Lemma 11 in Appendix, putting V = N [H], A1 =
(B/B1)H , A2 = (B/B2)H , it is sufficient to prove that given A1, A2 complete
Boolean algebras and ḟ a A1-name for an element of ωω, if

A1 
 “ḟ is dominating over V ”,

then
A1 ×A2 
 “ḟ is dominating over V [G]” ,

where G is A2-generic over V . To reach a contradiction, assume there is
z ∈ ωω∩V [G], (a1, a2) ∈ A1×A2 such that (a1, a2) 
 ∃∞n ∈ ω(z(n) > f(n)).
Let {nj : j ∈ ω} enumerate all such n’s, and for every j ∈ ω pick bj ∈ A2,
bj ≤ a2 and kj ∈ ω such that (a1, bj) 
 z(nj) = kj ; note that this can be
done since z ∈ V [G] and G is A2-generic over V ; hence z can be seen as
an A2-name and so it is suffcient to strengthen conditions in A2 in order
to decide its values. Since A1 forces f be dominating over V , one can pick
a ≤ a1 such that (a, a2) 
 ∃m∀j ≥ m(kj ≤ f(nj)). Pick j′ > m; then

- on the one side, since (a, bj′) ≤ (a1, a2), it follows (a, bj′) 
 f(nj′) <
kj′ = z(nj′)

- on the other side, since (a, bj′) ≤ (a, a2), it follows (a, bj′) 
 f(nj′) ≥
kj′ = z(nj′),

which is a contradiction. �
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Sublemma 2 (Preservation by ω-step amalgamation). Let B be a complete
Boolean algebra, B′, B′′ lB and ẋ ∈ V B ∩ 2ω such that

B 
 “fẋ is dominating over both V B′ and V B′′”,
with ψ : B′ → B′′ isomorphism.

Then, for every j ∈ ω,
Amω(B,ψ) 
 “fφj(ẋ) and fφ−j(ẋ) are dominating over V B”.

where φ : Amω(B,ψ) → Amω(B,ψ) is the automorphism extending ψ, gen-
erated by the amalgamation.

The proof simply consists of a recursive application of Sublemma 1 fol-
lowing the line of the proof of [12, Lemma 3.4] by replacing the notion of
“unbounded” with “dominating”.

Note that 2 is enough to show Lemma 10 when η ≥ 2 successor, by
considering B = Bαη , Amω(B,φ) = Bαη+1, B′ = Bαη−1 , B′′ = φη−1[Bαη−1 ]
and ψ = φη−1.

It is only left to show the case η = 1, which is: Bα0 lB′, B′′ lBα1 such
that Bα0 forces (B′/Bα0) ≈ (B′′/Bα0) ≈ B, and φ0 : B′ → B′′ isomorphism
such that φ0�Bα0 = IdBα0

. Then for every ẋ ∈ V Bα1 ∩ 2ω such that Bα1 

“fẋ is dominating over V Bα0 ”, one has, for every j ∈ ω,

Bα1+1 
 “ f
φj1(ẋ) and f

φ−j1 (ẋ) are dominating over V Bα1 ”.

But, since Bα0 forces both (B′/Bα0) ≈ (B′′/Bα0) ≈ B, and then, by
Sublemma 1 and the fact that random forcing is ωω-bounding and thus it
preserves dominating reals, we obtain Amω(Bα1 , φ0) = Bα1+1 and

Bα1+1 
 “fẋ is dominating over both V Bα0∗(B
′/Bα0 ) and V Bα0∗(B

′′/Bα0 )”.
�

4. Concluding remarks

The aim of this paper was first motivated by answering Problem 11.14
in [4], but we have also elaborated on this type of issues and applied other
forcing techniques. These results might just be the tip of the iceberg of a
potentially rather interesting research project, in order to use tools from
infinitary combinatorics, forcing theory and descriptive set theory, to give a
theoretical structure to the several social welfare relations on infinite utility
streams defined in economic theory. We mention that in another working
paper in preparation [8], together with Ram Sewak Dubey we also analyse
the SWRs concerning intermediate and weak Pareto and their relation with
the Baire property, by using a different method using a variant of Lauwers’
technique and introducing a notion of a special Mathias-Silver tree.

Other economic combinatorial principles which can be investigated are
those á la Hammond: given infinite utility streams x, y ∈ X = Y ω, we say
that x ≤H y whenever there are i 6= j such that x(i) < y(i) < y(j) < x(j)
and for all k 6= i, j, x(k) = y(k). Intuitively this type of pre-orders assert
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that a stream is better than another one if the distribution is less unequal
(think of the interpretation of a stream as a distribution of income or wealth).

So we can distinguish two different paths to elaborate on.
A first path, comparing different types of social welfare relations, in par-

ticular with respect to the following three categories: equity principles (e.g.
finite anonymity), efficiency principles (e.g. Pareto), egalitarian principles
(e.g. Hammond), and describe a hierarchy of such relations based on the
associated fragment of AC. From a pure theoretical point of view, this may
suggest a ranking-method among combinations of the three kinds of princi-
ples, analysing a degree of compatibility between them.

A second path, deserving further investigations is represented by the case
of uncountable streams. Indeed, papers in theoretical economics about the
study of free markets with infinitely many traders, were motivated by the
idea of considering (from the macroeconomic point of view) a market with
uncountably many traders (see the pioneering [3]). Hence, it is worth elab-
orating on the study of SWRs on utility streams with length κ > ω.

Appendix: on Shelah’s amalgamation

Let B be a complete Boolean algebra and A l B. The projection map
π : B → A is defined by π(b) =

∏
{b ≤ a : a ∈ A}.

Let B be a complete Boolean algebra and B1, B2 two isomorphic complete
subalgebras of B and φ0 the isomorphism between them. One defines the
amalgamation of B over φ0, say Am(B,φ0), as the complete Boolean algebra
generated by the following set: {(b′, b′′) ∈ B × B : φ0(π1(b′)) · π2(b′′) 6= 0},
where πj : B → Bj is the projection, for j = 1, 2. Consider on Am(B,φ0)
simply the product order. One can easily see that ej : B → Am(B,φ0) such
that

e1(b) = (b,1) and e2(b) = (1, b)
are both complete embeddings ([12], lemma 3.1), and for any b1 ∈ B1, one
can show that (b1,1) is equivalent to (1, φ0(b1)); indeed, assume (a′, a′′) ≤
(b1,1) and (a′, a′′) incompatible with (1, φ0(b1)) (in Am(B,φ0)). The former
implies π1(a′) ≤ b1, while the latter implies π2(a′′) · φ0(b1) = 0, and hence
one obtains φ0(π1(a′)) · π2(a′′) = 0, which means that the pair (a′, a′′) does
not belong to the amalgamation.

Moreover, if one considers f1 : e2[B] → e1[B] such that, for every b ∈ B,
f1(1, b) = (b,1), one obtains an isomorphism between two copies of B into
Am(B,φ0), such that f1 is an extension of φ0 (since for every b1 ∈ B1,
e1(b1) = (b1,1) = (1, φ0(b1)) = e2(φ0(b1)), which means e1�B1 = e2 ◦ φ0).

We can thus consider e1[B], e2[B] as two isomorphic complete subalgebras
of Am(B,φ0), and then repeat the same procedure to construct

Am2(B,φ0) := Am(Am(B,φ0), f1)

and f2 the isomorphism between two copies of Am(B,φ0) extending f1. It is
clear that one can continue such a construction, in order to define, for every
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n ∈ ω,
Amn+1(B,φ0) := Am(Amn(B,φ0), fn)

and fn+1 the isomorphism between two copies of Amn(B,φ0) extending
fn. Finally, let Amω(B,φ0) be the Boolean completion of direct limit of
Amn(B,φ0)’s, and φ = limn∈ω fn. One obtains B1, B2 l Amω(B,φ0) and
φ automorphism of Amω(B,φ0) extending φ0. (N.B.: it is common in this
framework to abuse terminology by referring to the Boolean completion of
the direct limit of a sequence of Boolean algebras simply as their direct limit,
and thus we write limα<λBα for the direct limit understood in this way.)

Note that the one-step amalgamation Am(B,φ0) is forcing equivalent to
a two step iteration B1 ∗ (B/B1 × B/B2), where remind B2 := φ0[B1] and
B/B1, B/B2 denote the quotient-algebras. More precisely we have

Lemma 11. Let H be a B1-generic filter over the ground model V . Then
V [H] |= (B/B1)H × (B/B2)H densely embeds into (Am(B,φ0)/e1[B1])H

For a proof one can see [12, Lemma 3.2].
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