Andriy Haydys Giorgio Laguzzi

Übungsblatt 8

Abgabe bis 7.7.2020, 12:00 per E-Mail an Ihren Tutor

Sei $K \subseteq \mathbb{C} \cong \mathbb{R}^2$ der Einheitskreis, d.h. der Kreis mit dem Mittelpunkt $z_0 = (0,0)$ und Radius 1. Ferner, sei I_K die Inversion am K wie in der Vorlesung definiert.

Gegeben $X \subseteq \mathbb{C}$, setze $I_K[X] := \{I_K(z) : z \in X\}$ (und analog definiert man $I_K[X] := \{I_K(x,y) : (x,y) \in X\}$, wenn $X \subseteq \mathbb{R}^2$).

Bemerkung: Prop. 4 aus der Vorlesung 8 darf nicht verwendet werden.

Übung 1. (4 Punkte) Betrachten Sie die folgende Gleichung (benannt als Cline equation):

$$cz\overline{z} + \alpha z + \overline{\alpha}\overline{z} + d = 0, \qquad z \in \mathbb{C}$$

wobei $\alpha \in \mathbb{C}$ und $c, d \in \mathbb{R}$. Setze $T_{c,d,\alpha} := \{z \in \mathbb{C} : cz\overline{z} + \alpha z + \overline{\alpha}\overline{z} + d = 0\}$.

Zeigen Sie:

- (a) Falls c = 0 und $\alpha \neq 0$, dann ist $T_{c,d,\alpha}$ eine Gerade.
- (b) Falls $c \neq 0$ und $|\alpha|^2 > cd$, dann ist $T_{c,d,\alpha}$ ein Kreis.
- Übung 2. (4 Punkte) Seien α, c, d , mit $|\alpha|^2 > cd$, und $T_{c,d,\alpha} \subseteq \mathbb{C}$ wie oben definiert. Zeigen Sie, dass $I_K[T_{c,d,\alpha}]$ eine Gerade oder ein Kreis ist.

(Hinweis: Verwenden Sie die Ergebnisse von Übung 1.)

- Übung 3. (4 Punkte) Sei K' ein Kreis im \mathbb{R}^2 , der orthogonal zu K ist. Zeigen Sie, dass auch $I_K[K']$ orthogonal zu K ist. (*Hinweis*: Sie können entweder die erste zwei Übungen oder III.36 und III.37 in Euklids *Elementen* verwenden.)
- Übung 4. (4 Punkte) C heißt ein cline, wenn C eine (euklidische) Gerade oder ein (euklidischer) Kreis ist (cf. Übung 1).

Gegeben zwei clines C_0, C_1 mit $p \in C_0 \cap C_1$ ein Schnittpunkt, definiert man der Winkel zwischen C_0 und C_1 am Punkt p, $\theta(p, C_0, C_1)$, wie folgt:

- Falls C_0 , C_1 sind zwei Geraden: Man wählt $q \in C_0$ und $t \in C_1$ $(q, t \neq p)$ so dass $\triangleleft qpt \leq R$ und definiert $\theta(p, C_0, C_1) := \triangleleft qpt$;
- Falls C_0 ist eine Gerade und C_1 ein Kreis: Man betrachtet die Tangente g an C_1 im p, dann wählt man $q \in g$ und $t \in C_0$ $(q, t \neq p)$ so dass $\triangleleft qpt \leq R$ und definiert $\theta(p, C_0, C_1) := \triangleleft qpt$;
- Falls C_0, C_1 zwei Kreise sind: Man betrachtet die Tangenten g_i an C_i im p und definiert der Winkel zwischen C_0 und C_1 als der Winkel zwischen Tangenten g_0 und g_1 .

Seien C_0, C_1 zwei *clines* mit $p \in C_0 \cap C_1$. Zeigen Sie, dass I_K Winkeltreu ist, d.h.

$$\theta(p, C_0, C_1) \cong \theta(I_K(p), I_K[C_0], I_K[C_1]).$$

(*Hinweis*: Betrachten Sie zunächst den Fall $p \notin K$ und $p \neq m$ und dann die Sonderfälle.)