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Introduction

Tree-forcing

In set theory of the reals some rather important objects are the
so-called tree-forcings. This kind of forcings plays a relevant role in
many applications regarding cardinal characteristics and regularity
properties.

Definition

@ T C 2<% is called perfect tree iff T is closed under initial
segments, T is closed under increasing < k-sequences of
nodes and Vs € Tdt € T such that s C t and t is splitting.

o PP is called tree-forcing iff every p € P is a perfect tree and for
every t € P, T; € P too, and we define g < p < q C p.
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Introduction

Tree-ideals and tree-measurability

o X is P-open dense iff VT ¢ PAT' C T(T' e PA[T'] C X).
The complement of a P-open dense set is called P-nowhere
dense. X is P-meager iff it can be covered by a < k-size union
of P-nowhere dense sets. The ideals of P-nowhere dense sets
and P-meager sets are respectively denoted by NVp and Zp.

@ X is P-measurable iff for every T € Pthereis T'C T, T' € P
such that [T'|NX € Zp or [T']\ X € Zp.
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Introduction

results about regularity properties at x

@ (Schlicht) The Levy collapse of an inaccessible to k™ gives a
model where all projective sets have the perfect set property.

o (Liicke, Motto Ros, Schlicht) The Levy collapse of an
inaccessible to kT gives a model where all £} sets have the
Hurewicz dichotomy.

o (Friedman, Khomskii, Kulikov) Let IP be a tree forcing which
is either k"-cc or satisfies k-axiom A. Then a k™ -iteration of
P with support of size x yields A}(P).

o (L.) A kT iteration with support of size < r of x-Cohen

forcing gives a model where all projective sets are Silver
measurable.
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Mathias forcing and Cohen sequences

k-Matbhias forcing and Cohen x-sequences
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Mathias forcing and Cohen sequences

What we know from the standard w-case:

e MA has pure decision, satifies the Laver property (and so
does not add Cohen reals)

e MA,, IF b > cov(M)
o MA,, I Z}(MA) A -AL(C).
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Mathias forcing and Cohen sequences

r-Mathias forcing MA for x uncountable is defined as the poset of
pairs (s, A), where s C k of size < k and A C & of size  such that
sup(s) < min(A),with (s,A) > (t,B) @t D2sANAC BAt\s CA.

RENEILS

Note that for MA“? we have the following two straightforward
facts:

Q@ MA"P adds Cohen k-reals. Let z be the canonical
MA “b_generic set and then define ¢ € 2% by: c(a) = 0 iff
the oo+ 1-st element of z is in S (where S C k is stationary
and co-stationary). One can easily check that c is k-Cohen.

Q@ MAYb does not have pure decision. In fact, let T € MAP
and a € k such that T does not decide the a-th element of z.
Consider the formula ¢ = "the a-th element of z is in S”;
then ¢ cannot be purely decided by T.
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Mathias forcing and Cohen sequences

We now want to show that we can build a somehow more general
k-Cohen sequence which occurs even in cases when the set of
splitting levels of a k-Mathias condition is not a club. Let

{vi : i < K} enumerate the limit ordinals < k.

Fix a stationary and costationary set S C {a < k : cf(a) = w}.
Given x € [k]", x := {ay : v < K}, we define, for | < k:

0 iff sup{oy,4n:n €W} ES.

Ce(i) :=
(7) 1 else.
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If x is MIA-generic, then C is k-Cohen.

Sketch of the proof

Let (s, A) € MA, C the part of C decided by (s, A) and o € 2<%
arbitrarily fixed. It is enough to show that there exists

(t,B) < (s, A) such that (¢, B) IF ¢~o C (..

Let A:= {a7 v < k}. Define 6A = sup{oz7 tniNEwW}

Then we can freely remove eIements from A in order to find B C A
such that

B €S o(j)=0.

Hence by fixing t C B sufficiently long, we get (¢, B) as
desired. ]
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Mathias forcing and Cohen sequences

Two important topological differences from the w-case

Proposition (Proposition 1)
Nua # Tma.

Proposition (Proposition 2)

Let T be a topologically reasonable family of subsets of k-reals.
Then T(MA) = I(C).

(Remind that I'(P) := every set in I is P-measurable.)
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Mathias forcing and Cohen sequences

Proof of Proposition 1.

Define
Xi:={xe[r]":Vj>i C(j) =0}

It is clear that for each i < k, X; € Ny ; indeed, let T € MA and
pick j > i so large that v; > ot({cor : STEM(T)(c) = 1}). Then,
one can easily shrink T in order to get [T'] N X; = 0, in a similar
way as we argued before to prove that C, was k-Cohen.

But X :=J;, Xi & Mua; indeed, for every T € MA, we can
always find z € [T] and i < & such that for all j > i, C,(j) =0,
which proves [T] N X # 0 (e.g., it is enough to pick

vi > ot({ar: STEM(T)(cx) = 1}).) O
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Mathias forcing and Cohen sequences

Proof of Proposition 2.

W.l.o.g. assume every T(s 4y € MA is such that ot(s) is a limit
ordinal. Define a map ¢ : 2% — 27 as follows: for every x € 27,

0 iff sup ﬂjf es
1 else,

p(x)U) =

where remind 3% := sup{a ,, : n € w}. Moreover let
©* 1 25K — 2<F be its associated approximating function. Let
X €T and Y := ¢ 1[X]. By assumption Y is MA-measurable.

We aim to prove X has the Baire property.
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Mathias forcing and Cohen sequences

A
Sublemma: Let T € MA. If Y N[T] is MA-comeager in [T],
then X N [¢*(STEM(T))] is comeager in [¢*(STEM(T))].

We give a sketch of the proof of this Sublemma.

Pick {B, : @ < k} be a C-decresing sequence of MA-open dense
sets in [T] such that (.. Bo € Y N[T].

Amv: Find {U, : o < k} open dense sets in [¢*(STEM(T))] such
that (., Ua € X N [p*(STEM(T))].

The set U, are obtained as

Ua = U{[¢*(STEM(T(2)))] : t € K<}, where the T(t)'s are
recursively built as follows.

Fix an enumeration {0} : j < k} of all ¢ € 2<". Given t € K* we
can find S(t7j) < T(t) so that

" (STEM(S(t7))) 2 " (STEM(T(t))"0;-

Then we pick T(t7j) < S(t7)) so that T(t7)) € Byy.

For t € k* with « limit ordinal, simply put T(t) := ., T(t[).
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Mathias forcing and Cohen sequences

The construction then satisfies the following points:
o for every t € k"1, we have [T(t)] C Ba;

® Unt1 = Usepar[@*(STEM(T)(t))] is dense in Uy,.
Note also that we can refine the choice of the T(t"j) in order to
get for every i # j, [STEM(T(t1))] N [STEM(T(t")))] = 0.
Hence [, Ua is dense in [p*(STEM(T))].
Finally, to show (., Us © X N [¢*(STEM(T))] we argue as
follows: pick x € N, Ua, 1 € k" (unique) so that
x € [¢*(STEM(T;q))], for every a < k. Then pick
Y € Nacel Tytal so that ¢(y) = x. By construction
Y € Naer Ba € YN[T], and so p(y) :=x € p[Y] == X. q.ed
(Sublemma)
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Mathias forcing and Cohen sequences

A
Now for every t € 2<%, pick T € MA so that ¢[[T]] = [t] (i.e.,
©*(STEM(T)) = t). Since we are assuming Y is MA-measurable,
it follows:

@ there is T' < T such that Y N[T'] is MA-comeager, and so
©*(STEM(T')) := t' D t is such that X N [t'] is comeager in
[t'] by the Sublemma applied to Y, or

@ there is T' < T such that Y N[T'] is MA-meager, and so
©*(STEM(T")) :=t’ D tis such that X N [t'] is meager in [t]
by the Sublemma applied to k" \ Y.

Hence, we get

Ve € 2573t D t([t'] N X is meager V [t'] N X is comeager),

which means X has the Baire property. []
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add(Zg) vs cov(M)

add(Zs) vs cov(M)
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add(Zg) vs cov(M)

Amoeba for Sacks

We start with an example for Sacks forcing in the w-case.

Definition

We define AS the poset consisting of pairs (n, T), with T perfect
tree and n € w. The ordering is given by:

(", TY<(n,T)&nd >nAT CTAT |n=T|n.

Given a generic filter G for AS, one may easily check that
Te:=(W{T:(n,T)€ G} is a perfect tree such that each branch
is Sacks generic. From now on we refer to T as a generic tree.

Let T be the generic tree and {t, : n € w} be the sequence of its
leftmost splitting nodes. Define z € 2* so that z(n) = 0 iff
|tnt1] < min{|t| : t € SPLIT(TG) At D t, 0}.
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add(Zg) vs cov(M)

It easy to check that z is a Cohen real.

However, there is way to define finer versions of Sacks-amoeba in
order to kill this kind (and all other kinds) of Cohen reals. This in
particolar implies that one can force

add(Zs) > cov(M).

(Similar situations occur for Miller and Laver forcing (Spinas,
1995).)

But what about the generalized context?
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add(Zg) vs cov(M)

Amoeba for Sacks in 2"
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add(Zg) vs cov(M)

Club Sacks forcing

There are several ways to generalize Sacks forcing. For instance
one can consider the following.

Definition

Let T C 2<F be a perfect tree. We say T is club Sacks iff for each
x € [T] one has

{a < K : x|a is splitting} is club.

The forcing consisting of this kind of trees is called club Sacks
forcing and denoted by SCub.
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add(Zg) vs cov(M)

Amoeba for club Sacks

Definition
Define AS““P as the poset consisting of pairs (p, T), with T club
Sacks tree in 2<% and p C T club subtree with size < k. The

order is:
(P, T)<(pT) & p ™M pAT CT.

As in the w-case, given a generic filter G for ASCUb 5ne can check
that T :=({T : (o, T) € G} is a club Sacks tree of generic
branches.
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add(Zg) vs cov(M)

Some important properties:

o ASYUP satisfies k-axiom A, for k inaccessible.

o ASYP satisfies quasi pure decision: for every D C AS dense,
(p, T) € AS, there is T’ such that for every (q,5) < (p, T'),

(9,.5) € D=(q,T'lq) € D.

As in the w-case, AS““P adds x-Cohen reals.

Here we are going to prove a much stronger result, showing that
when you have a Sacks tree (not necessarily with club splitting)

one can always code a sort of k-Cohen sequence inside the tree.

This will then yield to the proof that add(Zs) < cov(M).
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add(Zg) vs cov(M)

Coding by stationary sets

Let x be inaccessible. Fix {S; : 7 € 2<%} family of pairwise
disjoint stationary subsets of {a < & : cf(a) = w}.

Lemma (Pruning Lemma)

Let {D, : a < k} be a C-decreasing family of open subsets of 2,

T €S. There exists T* <, T such that for all o € lim(k) there is
To € 2<% such that:

o Vo €259 [0°1,] C D,, and

o sup{|r$|: n € w} €S, where for every n € w, r{ is the
leftmost splitnode in SPLITq4n(T*).
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add(Zg) vs cov(M)

The key step to prove the Pruning Lemma is the following result.

Lemma (Coding Lemma)

Let a € lim(k), T €S and 7 € 2<%. There exists T' <, T such
that sup{|r{| : n € w} € S; (where the r('’s are the leftmost
splitnodes in SPLITq4n(T")).

| \

Sketch of the proof.

Consider the stationary subset S;. Let s be the leftmost in
SPLIT,+1(T). Then one can find ry O's, r € SPLIT(T) in such
a way that sup{|r%| : n € w} € S;, and then let T’ be the subtree
obtained by setting ry as the “new” leftmost nodes in
SPLIT4+n(T’), by removing the exceeding splitnodes. Ol

v
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add(Zg) vs cov(M)

Proof of Pruning Lemma.

We build a x-fusion sequence {T, : a < K} as follows. We start
from To = T; for o < Kk we recursively construct:
o a¢lim(k): Toy1 = Tau.
o a € lim(k): First put So = (5., Tp. Pick 7o € 2" such
that:
Yo € Hy,0 7 € ﬂ Dg.
B<a
Note this can be done as 2= has size <  and each Dj is

open dense. Then apply the sublemma with 7 = 7, and
T=S, andset T, =T".

Finally put T* = (., Ta- By construction T* clearly satisfies
the required properties. []
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add(Zg) vs cov(M)

Definition

Given T € S we define the coding sequence associated with T
{7a : @ € lim(k)} in such a way that for every a € lim(k), 74 is
chosen so that sup{|t$| : n € w} € S;,, where ty € SPLIT4,(T).
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add(Zg) vs cov(M)

add(Zs) < cov(M,,).

Sketch of proof.

Let A < add(Zs) and {D; : i < A} family of open dense subsets of
2". We aim at finding x € 2" such that x € (;_, D;. Let

{S; : 7 € 2<%} be a family of pairwise disjoint stationary subsets
of {a < k : cf(ar) = w} as above. First of all recursively construct
a family of maximal antichains {A; : i < A} such that for every

i <\, every T € A; satisfies:

VB e |im(H)VW € H/g, [WATg] C Dy, (1)

where sup{|th| : n € w} € Sry and ti is the leftmost node in
SPLIT4,(T). Put X; := 2%\ |J{[T]: T € A;}. Since Ns =T, it
follows there is T* € S such that [T*] N X; =0 for all i < .
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add(Zg) vs cov(M)

Now let £ : 2<% — SpLIT(T*) the canonical isomorphism and

F : 2% — [T*] its induced one. Let ¢ be a Cohen k-real over the
ground model and put x = F(c). Note that since F(c) € [T*]VId,
T* is coded in V, each A; is a maximal antichain, it follows that
for every i < X there exists T' € A; such that V[c] = x € [T'],
and so there exists 0 € 2<% such that o I x € [T'].

Foro € 2<% put B(o):=({T' € Ai:i<AAol-xe[T]}. A
density argument shows that there exists T(o) € S such that
T(o) C B(o).
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add(Zg) vs cov(M)

R

Let {T":n < k} enumerate all such T(o)'s and let
{7‘%7 : £ € lim(k)} be the coding sequence associated with T7.
Define recursively {p; : j < x} as follows:

° po:=10

® pjt1:= pfrgﬂ, where &1 is chosen in such a way that

2§£j+1 3 pj
o pj = pj, for j limit ordinal.

and then put x := (J;_,, pj. By construction x € ;. D; as

desired. ]
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add(Zg) vs cov(M)

A couple of open questions
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Some final questions

Let M, be the ideal of k-meager sets, Is is the ideal of S-meager
sets, and <1 denotes Tukey embedding. Is M, <t Is?

Can one prove k-axiom A for amoebas and tree-forcings when & is
successor?
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THANK YOU FOR YOUR ATTENTION!
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