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Brief Introduction

Over the years, several notions of regularity have been studied
in set theory. The most popular ones are certainly the Baire
property and the Lebesgue measurability.

Definition

A set of reals X is Lebesgue measurable iff there exists a Borel
set B such that X M B is null. Analogously one can define the
Baire property by replacing “null” with“meager”.

Another important notion of regularity comes from Ramsey
theory.

Definition

X ⊆ [ω]ω is completely Ramsey iff for every s ∈ [ω]<ω and
H ∈ [ω]ω, H ⊃ s, there exists H ′ ⊆ H such that either
[s,H ′]ω ⊆ X or [s,H ′]ω ∩ X = ∅.
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Definition

T ⊆ ω<ω is called perfect tree iff it is closed under initial
segments and for every s ∈ T there exist t ⊇ s in T and
n0, n1 ∈ ω such that both tan0 and tan1 are in T .
A poset P is called tree-forcing iff every T ∈ P is a perfect tree
and for all t ∈ T one has Tt := {s ∈ T : s ⊆ t ∨ t ⊆ s} ∈ P.
The ordering is given by T ′ ≤ T iff T ′ ⊆ T .

Any tree-forcing adds a generic element of ωω, which is the
unique element in

⋂
T∈G [T ](=

⋃
T∈G Stem(T )).

Some examples:

Cohen forcing C := {s ∈ 2<ω}
random forcing B := {T : T perfect tree ∧ µ([T ]) > 0}
Mathias forcing

MA := {T ⊆ 2<ω : ∀s ⊇ Stem(T )(sa1 ∈ T ⇒ sa0 ∈ T )}.
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P-measurability

Definition

A set of reals X is called P-null iff for every T ∈ P there exists
T ′ ∈ P such that T ′ ⊆ T and X ∩ [T ′] = ∅. Furthermore, we
define IP to be the σ-ideal σ-generated by the P-null sets.
A set of reals X is said to be P-measurable iff
∀T ∈ P∃T ′ ∈ P,T ′ ⊆ T (X ∩ [T ′] ∈ IP ∨ [T ′] \ X ∈ IP).

The following are well-known:

X has the Baire property iff X is C-measurable;

X is Lebesgue measurable iff X is B-measurable;

X has the Ramsey property iff X is MA-measurable.

We use the following notation

Γ(P) :≡ all sets of reals are P-measurable.
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Silver and Miller

A perfet tree T ⊆ 2<ω is Silver iff for every s, t ∈ T , with
|s| = |t|, one has

sa0 ∈ T ⇔ ta0 ∈ T ∧ sa1 ∈ T ⇔ ta1 ∈ T .

A perfet tree T ⊆ ω<ω is Miller iff every splitting node has
infinitely many immediate successors.
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Historical background

(Vitali, 1905) by using the axiom of choice one can build
non-measurable sets;

(Solovay, 1970) if κ is inaccessible and G is
Coll(ω, κ)-generic over V , then
L(R)V [G ] |= ZF + DC + Γ(P);

(Shelah, 1984-1985)
Con(ZF + DC + Γ(B))→ Con(ZFC + ∃κ inaccessible),
while Con(ZFC )→ Con(ZF + DC + Γ(C)).

More recently, the study of regularity properties has been
continued by other set theorists: Brendle, Löwe, Spinas,
Schrittesser, Friedman, Ikegami and Khomskii.
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Regularity properties diagram

The main scope of our research is to investigate the
implications and non-implications between these regularity
properties.

Γ(MA)

Γ(C)

Γ(M)

Γ(V)

Γ(S)

Γ(B)
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� ≡ true; � ≡ false
(Solovay, 1970)
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P-homogeneity

To force all sets to be P-measurable, Solovay’s proof needs a
complete boolean algebra satisfying the following key property.

Definition

A complete boolean algebra B is P-homogeneous iff for every
formula φ(x) with parameters in the ground model, and
B-name τ for a P-generic real, one has ||φ(τ)||B ∈ Bτ , where
Bτ is the complete subalgebra generated by τ .

In particular, if B satisfies the following:

for every B0,B1 l B such that B0
∼= B1

∼= P and f : B0 → B1

there exists f ∗ ⊇ f such that f ∗ is an automorphism of B,

then B is P-homogeneous.



Regularity
properties and
tree-forcings

Giorgio
Laguzzi

P-homogeneity

To force all sets to be P-measurable, Solovay’s proof needs a
complete boolean algebra satisfying the following key property.

Definition

A complete boolean algebra B is P-homogeneous iff for every
formula φ(x) with parameters in the ground model, and
B-name τ for a P-generic real, one has ||φ(τ)||B ∈ Bτ , where
Bτ is the complete subalgebra generated by τ .

In particular, if B satisfies the following:

for every B0,B1 l B such that B0
∼= B1

∼= P and f : B0 → B1

there exists f ∗ ⊇ f such that f ∗ is an automorphism of B,

then B is P-homogeneous.



Regularity
properties and
tree-forcings

Giorgio
Laguzzi

(P,Y )-homogeneity

Shelah’s idea was to use a variant of Solovay’s method, by
using a refinement of P-homogeneity.

Definition

Let B be a complete boolean algebra and Y a B-name for a
set of reals. We say that B is (P,Y )-homogeneous iff for every
formula φ(Y , x) and B-name τ for a P-generic real, one has
||φ(Y , τ)||B ∈ Bτ , where Bτ is the complete subalgebra
generated by τ .

To obtain this property, the B-name Y needs to be a fixed
point of the automorphisms f ∗, i.e., 
B f ∗(Y ) = Y .

Question. Why (P,Y )-homogeneity?



Regularity
properties and
tree-forcings

Giorgio
Laguzzi

(P,Y )-homogeneity

Shelah’s idea was to use a variant of Solovay’s method, by
using a refinement of P-homogeneity.

Definition

Let B be a complete boolean algebra and Y a B-name for a
set of reals. We say that B is (P,Y )-homogeneous iff for every
formula φ(Y , x) and B-name τ for a P-generic real, one has
||φ(Y , τ)||B ∈ Bτ , where Bτ is the complete subalgebra
generated by τ .

To obtain this property, the B-name Y needs to be a fixed
point of the automorphisms f ∗, i.e., 
B f ∗(Y ) = Y .

Question. Why (P,Y )-homogeneity?



Regularity
properties and
tree-forcings

Giorgio
Laguzzi

(P,Y )-homogeneity

Shelah’s idea was to use a variant of Solovay’s method, by
using a refinement of P-homogeneity.

Definition

Let B be a complete boolean algebra and Y a B-name for a
set of reals. We say that B is (P,Y )-homogeneous iff for every
formula φ(Y , x) and B-name τ for a P-generic real, one has
||φ(Y , τ)||B ∈ Bτ , where Bτ is the complete subalgebra
generated by τ .

To obtain this property, the B-name Y needs to be a fixed
point of the automorphisms f ∗, i.e., 
B f ∗(Y ) = Y .

Question. Why (P,Y )-homogeneity?



Regularity
properties and
tree-forcings

Giorgio
Laguzzi Solovay’s proof: P-homogeneity gives

1 V [G ] |= all Onω-definable sets are P-measurable.

2 Hence, L(R)V [G ] |= Γ(P).

Analogously, (P,Y )-homogeneity gives

1 V [G ] |= all (Onω,Y )-definable sets are P-measurable.

2 Moreover, Y can be constructed in order to get
V [G ] |= Y is not Q-measurable.

3 Hence, L(R, {Y })V [G ] |= Γ(P) ∧ ¬Γ(Q).
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Shelah’s amalgamation

The key technique to build homogeneous algebras is the
amalgamation. It was invented by Shelah for building a model
for Γ(C) without any need of an inaccessible.

Given a Boolean algebra A, A0,A1 l A and f : A0 → A1 an
isomorphism, the amalgamation provides us with a machinery
to build a complete Boolean algebra A∗ ⊇ A and an
automorphism f ∗ : A∗ → A∗ such that f ∗ ⊇ f .
Then, we can iterate this process and use a book-keeping
argument in order to obtain a complete Boolean algebra B ⊇ A
such that for each isomorphic pair A0,A1 l B and f : A0 → A1

there exists f ∗ ⊇ f , f ∗ : B → B automorphism.

key point. We want to define Y is order to obtain:

f ∗(Y ) = Y , for every automorphism generated by the
amalgamation, and

Y is not Q-measurable.



Regularity
properties and
tree-forcings

Giorgio
Laguzzi

Shelah’s amalgamation

The key technique to build homogeneous algebras is the
amalgamation. It was invented by Shelah for building a model
for Γ(C) without any need of an inaccessible.
Given a Boolean algebra A, A0,A1 l A and f : A0 → A1 an
isomorphism, the amalgamation provides us with a machinery
to build a complete Boolean algebra A∗ ⊇ A and an
automorphism f ∗ : A∗ → A∗ such that f ∗ ⊇ f .
Then, we can iterate this process and use a book-keeping
argument in order to obtain a complete Boolean algebra B ⊇ A
such that for each isomorphic pair A0,A1 l B and f : A0 → A1

there exists f ∗ ⊇ f , f ∗ : B → B automorphism.

key point. We want to define Y is order to obtain:

f ∗(Y ) = Y , for every automorphism generated by the
amalgamation, and

Y is not Q-measurable.



Regularity
properties and
tree-forcings

Giorgio
Laguzzi

Shelah’s amalgamation

The key technique to build homogeneous algebras is the
amalgamation. It was invented by Shelah for building a model
for Γ(C) without any need of an inaccessible.
Given a Boolean algebra A, A0,A1 l A and f : A0 → A1 an
isomorphism, the amalgamation provides us with a machinery
to build a complete Boolean algebra A∗ ⊇ A and an
automorphism f ∗ : A∗ → A∗ such that f ∗ ⊇ f .
Then, we can iterate this process and use a book-keeping
argument in order to obtain a complete Boolean algebra B ⊇ A
such that for each isomorphic pair A0,A1 l B and f : A0 → A1

there exists f ∗ ⊇ f , f ∗ : B → B automorphism.

key point. We want to define Y is order to obtain:

f ∗(Y ) = Y , for every automorphism generated by the
amalgamation, and

Y is not Q-measurable.



Regularity
properties and
tree-forcings

Giorgio
Laguzzi

Γ(V) ∧ ¬Γ(M) ∧ ¬Γ(B)

Let us focus on the following diagram:
(L., 2012)

�

�

�

�

�

�
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In this particular situation we need to build two different sets of
B-names Y and Z :

Y will be non-Miller measurable;

Z will be non-Lebesgue measurable.

We want to recursively construct 〈Bα : α < κ〉, 〈Yα : α < κ〉
and 〈Zα : α < κ〉 and put

B := limα<κ Bα

Y :=
⋃
α<κ Yα

Z :=
⋃
α<κ Zα.

Let us see a sketch of the construction.
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If f : A0 → A1 is an isomorphism, A0
∼= A1

∼= V,
〈Bαη : η < κ〉 is an increasing cofinal sequence of
complete Boolean algebras and 〈fη : η < κ〉 is a sequence
of isomorphisms generated by the amalgamation, with
dom(fη) = Bαη and fη ⊇ f , then we put

Ẏαη+1 := Ẏαη ∪ {f j
η (ẏ), f −jη (ẏ) : ẏ ∈ Ẏαη , j ∈ ω},

Żαη+1 := Żαη ∪ {f j
η (ż), f −jη (ż) : ż ∈ Żαη , j ∈ ω};
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for cofinally many α’s,

Bα+1 = Bα ∗ ȦV.

In this case, put Ẏα+1 = Ẏα and Żα+1 = Żα.

for cofinally many α’s, Bα+1 = Bα ∗ Ṁ and

Ẏα+1 = Ẏα ∪ {ẏT : T ∈M},

where ẏT is a name for a Miller real over NBα through
T ∈ NBα ,

for cofinally many α’s, Bα+1 = Bα ∗ Ḃ and

Żα+1 = Żα ∪ {żT : T ∈ B},

and zT is a name for a random real through the positive
measure tree T ∈ NBα .
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By using (V,Y ,Z )-homogeneity, together with the amoeba
Silver AV, a pretty standard argument gives

N[G ] |= all (Onω,Y ,Z )-definable sets are V-measurable.

What is more complicate is to prove that Y and Z are not
regular.
We need to find two combinatorial properties for the names in
Z and Y , respectively, which are:

preserved by amalgamation;

preserved by Silver extension;

satisfied by random reals and Miller reals, respectively.
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Unboundedness

For Y , the suitable property is:

ẋ is unbounded over the ground model N,

i.e., ∀y ∈ ωω ∩N∃∞n(y(n) < ẋ(n)). Note that Miller reals are
unbounded over the ground model. Such a property was also
used by Shelah to get Γ(B) ∧ ¬Γ(C).
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Unreachability

For Z , we need to introduce a different property: the
unreachability. A real x is unreachable iff it is not captured
by any ground model slalom.

Γk = {σ ∈ HFω : ∀n ∈ (|σ(n)| ≤ 2kn)}} and
Γ =

⋃
k∈ω Γk , where HF denotes the hereditary finite sets;

let g(n) = 2n and {In : n ∈ ω} be the partition of ω such

that I0 = {0} and In+1 =
[∑

j≤n g(j),
∑

j≤n+1 g(j)
)

, for
every n ∈ ω;

given x ∈ 2ω, define hx(n) = x�In.

Definition

One says that z ∈ 2ω is unreachable over N iff

∀σ ∈ Γ ∩N∃n ∈ ω(hz(n) /∈ σ(n)).
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If x is random over N, then x is unreachable over N.

If x is unreachable over N and r is V-generic over N, then
x is unreachable over N[r ].

The property “x is unreachable over the ground model” is
preserved by amalgamation.

Corollary

Z is not Lebesgue measurable.
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Γ(V) ∧ ¬Γ(M) ∧ ¬Γ(B)

Hence, we obtain

L(R, {Y }, {Z})N[G ] |= Γ(V) ∧ ¬Γ(B) ∧ ¬Γ(M),

which gives us the desired diagram

�

�

�

�

�

�
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Open Questions

Does Γ(C)⇒ Γ(MA)?

Does Γ(MA)⇒ Γ(C)?
(I conjecture that one can construct a model for
Γ(MA) ∧ ¬Γ(C).)

Main open problem: can one build a model for Γ(MA)
without using inaccessible cardinals?
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Grazie per la vostra attenzione!

Thanks for your attention!


