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“INDEX THEORY”

The Atiyah-Singer index theorem is certainly one of the most influential
collection of results from the last century. The theorem itself relates an analytic
invariant, the Fredholm index of an elliptic differential operator, to a topological
invariant, the topological index of its symbol. Applications of this and related
theorem range from the computation of virtual dimensions of moduli spaces in
gauge theory over obstructions against positive curvature metrics to integrality
results for certain characteristic numbers. A close cousin is the theorem of
(Hirzebruch/Grothendieck-) Riemann-Roch in algebraic geometry.

Early precursors of the Atiyah-Singer index theorem are the Riemann-Roch
theorem (Roch, 1865) and the “global” Gauß-Bonnet theorem (v. Dyck,
1888), both in (real) dimension 2. Higher dimensional versions appeared much
later. In fact, the most important special cases all predate the Atiyah-Singer
index theorem, namely the Gauß-Bonnet-Chern theorem (Allendoerfer-Weil,
1943; Chern, 1944), the Hirzebruch signature theorem (Hirzebruch, 1953), and
the Hirzebruch-Riemann-Roch theorem (Hirzebruch, 1954). Gel’fand realised
in 1960 that all these theorems express Fredholm indices of elliptic operators
in terms of topological data. He asked for a general topological index for-
mula, which was found by Atiyah and Singer. Their original proof (announced
1963, published by Palais and Cartan-Schwartz both in 1965) relied on cobor-
dism theory and the Hirzebruch-Riemann-Roch theorem, the published version
from 1968 uses topological K-theory instead. Atiyah and Singer noticed that
spin geometry plays an important role in the background, and they also intro-
duced the Dirac operator in mathematics. Atiyah and Segal in 1968 provided
an equivariant generalisation, extending the Lefschetz fixpoint theorem (Lef-
schetz, 1926). Atiyah and Singer also proved a families’ version in 1971, similar
in spirit to the Grothendieck-Riemann-Roch theorem (Grothendieck, 1957), and
a version for real K-theory.

There are many ways to formulate and prove the Atiyah-Singer index theo-
rem, and each of them has its own merits and limitations. In this seminar, we
will concentrate on the special case of Dirac operators. Though “geometric”
Dirac operators are rather special differential operators, they are rich enough
to generate all elliptic differential operators in a K-theoretic sense on one hand,
and have a nice description in terms of elementary Riemannian geometry on the
other. The following list of results can all be expressed in terms of geometric
Dirac operators.

If d∗ denote the formal adjoint of the exterior differential d on the smooth de
Rham complex on an n-dimensional smooth manifold M , then D = d + d∗ is
the Hodge-Dirac operator. Because D exchanges parity of the degree of forms,
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2 INDEX THEORY

we can define the index of D : Ωev → Ωodd as

ind
(
D : Ωev → Ωodd

)
= dim ker(D)− dim coker(D)

= dim ker
(
D : Ωev → Ωodd

)
− dim ker

(
D : Ωodd → Ωev

)
. (1)

By the Hodge theorem, the kernel of the full operator D represents cohomology
with real coefficients. We get the Gauß-Bonnet-Chern theorem for the Euler
characteristic

χ(M) =
n∑

k=0

(−1)k dimHk(M ;R) = ind
(
D : Ωev → Ωodd

)
= e(TM)[M ] =

∫
M
e
(
∇TM

)
. (2)

If M is oriented, Poicaré duality gives a bilinear form Hk(M ;R) ×
Hn−k(M ;R) → R by (a, b) 7→ (a ^ b)[M ]. If n = 4`, this form is sym-
metric and nondegerate on the middle cohomology group H2`(M ;R); its signa-
ture is called the signature of M . On the level of forms, we have the bilinear
form (α, β) 7→

∫
M α∧β = 〈α, ∗β〉L2 , where “∗” is the Hodge star operator. The

±1-eigenspaces of “∗” are denote by Ω±(M). We have the Hirzebruch signature
theorem

sign(M) = ind
(
D : Ω+(M)→ Ω−(M)

)
= L(TM)[M ] =

∫
M
L
(
∇TM

)
. (3)

If M is a Kähler manifold with holomorphic tangent bundle T ′M (for ex-
ample, a smooth projective variety over C with its algebraic tangent bundle),
and W → M is a Hermitian holomorphic vector bundle, then we similarly
get the Dolbeault operator D = ∂̄ + ∂̄∗ acting on antiholomorphic differential
forms, which is a Dirac operator, too. By the Hodge theorem, its kernel repre-
sents the cohomology of the sheaf of holomorphic sections of W . We have the
Hirzebruch-Riemann-Roch theorem for the holomorphic Euler characteristic

χ(M ;W ) = ind
(
D : Ω0,ev(M ;W )→ Ω0,odd(M ;W )

)
= (Td(T ′M) ch(W ))[M ] =

∫
M

Td
(
∇T ′M

)
ch
(
∇W

)
. (4)

This Dolbeault operator also appears in an analytic proof of the Kodaira em-
bedding theorem.

Finally, if M is oriented and spin (with a fixed spin structure), there is the
Atiyah-Singer (or untwisted) Dirac operator D on the spinor bundle S → M .
If n = dimM is even, this bundle splits as S = S+ ⊕ S−. We may twist it
with any vector bundle W →M with connection if we like (or with the trivial
vector bundle C to keep it untwisted). This way we can recover the Hodge-
Dirac operator and the Dolbeault operator (if M is also Kähler) among others.
By the Atiyah-Singer index theorem for Dirac operators,

ind
(
D : Γ(S+ ⊗W )→ Γ(S− ⊗W )

)
=
(
Â(TM) ch(W )

)
[M ] =

∫
M
Â
(
∇TM

)
ch
(
∇W

)
. (5)
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This is our primary goal, the other theorems above can be deduced from it. The
untwisted Dirac operator also appears in the Lichnerowicz theorem on metrics
of positive scalar curvature.

For the proof, we note that the index equals the supertrace of the heat opera-
tor (McKean-Singer, 1967), which can be expressed in terms of local geometric
data (Gilkey, 1974; Atiyah-Bott-Patodi, 1975). While the heat kernel itself
becomes singular in the small time limit, by some “miraculous cancellations”,
its supertrace converges. For geometric Dirac operators, these miraculous can-
cellations have been explained by Getzler in 1983 using ideas by Witten and
Alvarez-Gaumé. This is the method of proof we will use. The heat kernel proof
bypasses K-theory and directly produces a formula in de Rham-cohomology.
This is well for the index theorem itself, but not quite enough for some of its
extensions, for example to families. On the other hand, it gives rise to re-
finements in other directions, for example for manifolds with boundary. And
Bismut and others have used the heat kernel method to prove cohomological
versions also of the equivarant and family generalisations of the index theorem.

The first part of the programme introduces Dirac operators and their prop-
erties (talks 1–4) and proves the index theorem (talks 5–8). Some of the talks
can nicely be split among two speakers, just ask. The last part of the seminar
(5 talks) is devoted to applications, reformulations and extensions of the index
theorem. Because there are many interesting topics, some of these talks are
optional at the moment. The participants are invited to establish a nice mix-
ture of different topics by choosing from the suggested list. Some talks can be
combined into one overview talk if needed (e.g. 9 and 10 or 12–??).

There is no ideal book for the whole seminar. Roe’s book [Roe] is short and
elementary, but uses ad hoc methods every now and then. The book [BGV] by
Berline, Getzler and Vergne is rather comprehensive and often too general for
our purposes, but is the book if one wants to work on local index theory. The
books [BB] by Bleecker and Booss-Bavnbek, [LM] by Lawson and Michelsohn
and [Sh] favour the K-theoretic embedding proof (see optional talks 9 and 10),
but can still be helpful.

1. Dirac Operators, 26.4., Lye, Vetere

Dirac operators are a very special kind of differential operators. This talk
should recall some basic concepts from Riemannian geometry and then intro-
duce geometric Dirac operators, which will be needed particularly in talks 7, 8,
and give many nice examples.

Recall Riemannian manifolds, introduce the Levi-Civita connection
[BGV, (1.18)] (we don’t need Riemannian curvature yet). Recall differential
forms, the exterior derivative d, and Stokes’ theorem. Introduce the Hodge
star operator and the formal adjoint d∗ of d [Roe, Def 1.21–Prop 1.23], the
Clifford algebra, (graded) Clifford bundles and Dirac operators [Roe,
Defs 3.1–3.5], [BGV, Def 3.1–Prop3.5]. Note that Roe’s definition gives exactly
the “geometric” Dirac operators that we will need later, whereas [BGV, Def
3.36, Prop 3.38] is more general. As a motivation, Roe shows that the square
of the Dirac operator on flat Rn is the Laplacian. If you like, relate this to
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Dirac’s original definition on Minkowski space-time, but don’t compute squares
of more general Dirac operators yet. Show that Dirac operators are symmetric
[Roe, Prop 3.11].

The second half introduces some of the “classical” Dirac operators. We will
focus on their geometric construction. To interpret their indices, please as-
sume the Hodge theorem both in the real and in the complex setting; it will
be proved later. Also take ind(D) = dim ker(D+) − dim ker(D−) as in (1)
as a preliminary definition of the index. Cover as many of the following ex-
amples as you like: The index of the de Rham operator is the Euler charac-
teristic, computed by the Euler class (needed for Gauß-Bonnet-Chern (2))
[Roe, Ex 3.19–(3.23)],[BGV, Prop 3.53, Cor 3.55]. A different grading gives
the signature, computed by the L-genus (figuring in the Hirzebruch signa-
ture theorem (3)) [BGV, Def 3.57–first half of Prop 3.61]. Note that [BGV]
and [Roe] follow different conventions for the Hodge star operator. The index
of the Dolbeault operator on a Kähler manifold is the holomorphic Euler char-
acteristic (as in Hirzebruch-Riemann-Roch (4)) [Roe, Ex 3.25–Prop 3.27].
If there is time, follow [BGV, Def 3.63–Cor 3.69] instead, where cohomology of
holomorphic vector bundles is considered.

2. Spin geometry, 3.5., Bergner, Eberhardt

On so-called spin manifolds, there is a fundamental Dirac operator acting on
spinors. It can be used for example to exclude the existence of positive scalar
curvature metrics on certain spin manifolds. All other Dirac operators can be
interpreted as “twisted” versions of the spin Dirac operator.

Recall principal bundles and induced vector bundles, describe connec-
tions [Roe, Ex 2.1–Prop 2.7], [BGV, Def 1.1–Prop 1.4, Prop 1.7–Def 1.10,
Defs 1.12, 1.14, Prop 1.16]. Introduce the groups (Pin(n) and) Spin(n) [BGV,
Def 2.3, Thm 2.9; Prop 3.7–Prop 3.10], [Roe, Def 4.5, Prop 4.7]. Discuss rep-
resentations of the Clifford algebra: [Roe, Prop 4.9] uses representation
theory of finite groups, [BGV, Lemma 3.17–Def 3.20] just gives an explicit
description.

Introduce spin structures, mention the obstruction w2(TM) [BGV,
Def 3.33, Prop 3.34]. If M has a spin structure, then there is a basic Clifford
bundle, the spinor bundle S, and each Clifford bundle is of the form S ⊗W
[BGV, Prop 3.35]. If M is not spin, this construction still works locally. If M is
even-dimensional, the spinor bundle splits as S = S+ ⊕ S−, and the bundle of
exterior forms is isomorphic to S⊗S, in other words, the spinor bundle is the
square root of the bundle of forms. Exhibit the two gradings on Λ•T ∗M lead-
ing to the Euler operator and the signature operator. On a Kähler manifold
with spin structure, show that Λ0,•M ∼= S⊗L, where L⊗L = K is the canoni-
cal bundle. If there is time, also mention Spinc-structures [Roe, Def 4.26–4.28],
these may be helpful in talks 9 and 10.

3. The square of a Dirac operator, 10.5., Zaccanelli

The square of a Dirac operator D is the sum of a connection Laplacian
and a curvature term. Depending on the context, this formula is known as
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Lichnerowicz, Bochner, Schr”odinger or Weitzenböck formula. This formula is
not only a starting point for the heat equation proof. If the curvature term
is positive, then kerD = 0. Applications include obstructions against positive
scalar curvature and the Kodaira embedding theorem.

Introduce the curvature of a connection, discuss the Riemannian cur-
vature tensor on TM with its symmetries [BGV, Prop 1.26] and introduce
Ricci and scalar curvature. To give some feeling for these notions, it might
be nice to quote comparison theorems like Alexandrov-Toponogov and Bishop-
Gromov without proof [Go2, Sätze 2.20, 2.42]. Show that the curvature of a Clif-
ford connection splits into the spin curvature and a twist curvature [Roe,
Lem 3.13–Prop 3.16]. Introduce the connection Laplacian and show that it
is non-negative [Roe, Lem 3.9], [LM, Prop II.8.1]. Derive the Schrödinger-
Bochner-Lichnerowicz-Weitzenböck formula for the square of the Dirac
operator. [Roe, Prop 3.18].

Depending on time, discuss as many of the following applications as possible
(or as you like). The index of the spin Dirac operator is an obstruction against
positive scalar curvature [LM, Thm II.8.8, Cor II.8.9], [Roe, Thm 13.1]. The
Kodaira vanishing and embedding theorems rely on a similar argument
[GH]. The Bochner trick shows that H1(M ;R) is represented by parallel
forms if the Ricci curvature is nonnegative [LM, Thms II.8.4, II.8.5], [Roe,
Thm 6.9].

4. Spectral Theory, 17.5., Fornasin

Dirac operators on Riemannian manifolds are elliptic. This has important
consequences for their analytical behaviour. In particular, they have compact
resolvent and therefore discrete spectrum on compact manifolds, and one may
talk about their Fredholm indices.

Explain the symbol of a differential operator D and define elliptic [LM,
Sect. III.1]. Explain Sobolev spaces and the theorems of Sobolev and Rel-
lich [Roe, Def 5.1–5.12]. Prove the G̊arding inequality and the elliptic
estimate, and use them to prove that the Dirac operator has discrete spec-
trum [Roe, 5.14–Thm 5.27] (this is also done in [LM, Sect. III.2–5], but in
greater generality). Define the Fredholm index and prove equation (1) above
[LM, III.§5–Cor 5.3], mention stability [LM, Thm III.7.10]. If there is time,
introduce the heat operator following [Roe, Prop 5.29–Rem 5.32]. As an appli-
cation of this theory, we now prove the Hodge theorem [LM, Cor 5.6] [Roe,
Def 6.1–Cor 6.3], which was already used in talk 1.

5. Chern-Weil theory, 24.5., Lye, Schmidtke

The analytic proof of the index theorem will spit out a differential form
constructed from a certain polynomial in the curvatures of the bundles involved.
The purpose of this talk is to explain Chern-Weil theory, which interprets such
expressions as characteristic classes in de Rham cohomology.

Recall vector bundles with structure group G and G-connections. From
G-invariant polynomials on g, construct closed differential forms, prove in-
dependence of the G-connection [MS, App C, Fund. Lemma, Cor.], [Zh,
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Chap 1], [Go2, Abs 4.3], [Roe, Def 2.17–Def 2.21],. Construct Chern classes
in H•(−;R) that satisfy the usual axioms [MS, App C, Lem 6 and Thm on
p 306, Cor 1], and Pontryagin classes [MS, Cor 1 on p 308], [Roe, (2.26)].
Note that these classes are typically defined in integral cohomology, but for eval-
uating against a fundamental class, R-coefficients suffice. If you like, mention
cobordism invariance of Pontryagin numbers and describe the rational oriented
bordism ring [MS, Thm 18.8–Cor 18.10] using Pontryagin numbers (without
proof). These facts were used in the original proof of the Atiyah-Singer theo-
rem.

Introduce the Â-class [Roe, Ex 2.28] and the Chern character [Roe,
(2.25)]. Also explain the notion of the twist or relative Chern character
[BGV, p. 146], [Roe, (4.25)]. Then explain as many of the following rela-
tions as time permits (or as you like). By computing the Chern character of
the (graded or ungraded) spinor bundle, explain the L-class and the Euler

class as products of the Â-class and the corresponding twist Chern character
for Λ•T ∗M [BGV, Lem 4.4, Prop 4.5], [Roe, Prop 13.6], [LM, Prop III.11.24].

Similarly, exhibit the Todd-class as Â(∇TM ) ch(∇K1/2
) [BGV, p. 152], see

also [LM, III.(12.10, 11)]. All these classes are needed for the classical index
theorems (2)–(5) in talk 8.

6. Heat operators, 31.5., Kertels

To prove the index theorem, we start with the McKean-Singer trick. Thus
we rewrite the Fredholm index of a Dirac-type operator as the supertrace of

an associated heat operator e−tD
2
, independent of the time t. The index itself

naturally corresponds to the large time limit. In the small time limit, we get
an asymptotic expansion of the heat operator that is locally computable from
the Riemannian metric and the coefficients of D.

Introduce heat operators and heat kernels as fundamental solutions of the
heat equation [Roe, Def 7.1–Rem 7.7], [BGV, Def 2.15–Prop 2.17], treat the
heat kernel on flat Rn explicitly [BGV, Sect 2.2]. If you like, give a little
physical motivation. Define trace class operators and show that the heat su-
pertrace can be computed as an integral [Roe, Prop 8.1–Thm 8.12, Prop 11.2],

[BGV, (2.9)]. Explain the McKean-Singer trick ind(D) = str(e−tD
2
) [Roe,

Prop 11.9–(11.11)], [LM, III.§6].
Describe formal solutions of the heat equation by an ODE, show that the

leading order term is parallel translation [Roe, Lem 7.12–Prop 7.19], [BGV,
Sect 2.5]. Explain that for the McKean-Singer trick, the supertrace of a formal

solution suffices, and note that str(e−tD
2
) depends on a higher order term.

Then sketch how to obtain an actual heat kernel [BGV, Sect 2.4]. Maybe
consider the flat torus Tn as an example to see that the formal solution can
differ from the actual one.
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7. Getzler rescaling, 14.6., Müller

We have seen that the heat operator e−tD
2

has an asymptotic expansion for

small times t with leading term of order t−
dimM

2 . Nevertheless by McKean-
Singer, its supertrace should be constant. Getzler rescaling is a trick to prove
that even locally, the heat supertrace for geometric Dirac operators has a con-
verging integrand as t → 0. Getzler rescaling affects not only the space and
time directions of the heat operator, but involves also an internal rescaling of
the Clifford algebra.

Before we start the actual rescaling, we have to represent the operator D2 in
a suitable trivialisation of the bundle E over a normal coordinate chart
of M and estimate its coefficients [BGV, Lem 4.13, 4.14]. Then explain Getzler
rescaling [BGV, p. 161], some motivation is given after [BGV, Prop 4.16].
Note that the part of Getzler rescaling on the Clifford algebra does not come
from a rescaling of the Dirac bundle.

Then show that under Getzler rescaling, the operator D2 converges to a
model operator on TpM [BGV, Prop 4.19]. The formal solution for the heat
kernel converges to a (at this point still unknown) model solution of the
model operator’s heat equation [BGV, Lem 4.18]. Alternatively, follow [Roe,
Chap 12–Prop 12.24].

8. Mehler’s formula, 21.6., Hein, Peternell

The heat kernel of the model operator from the last talk can be explicitly
computed. The resulting supertrace can be interpreted as an integral of a
Chern-Weil-theoretic characteristic class. This finishes the proof of the Atiyah-
Singer index theorem.

If you like, start by motivating the harmonic oscillator from quantum me-
chanics (see [Roe, Chap 9] for a source). Interpret the model operator as a
harmonic oscillator on TpM . The heat operator of a harmonic oscillator is given
by Mehler’s formula [BGV, Sect 4.2], [Roe, (9.11)–Rem 9.13]. Conclude that
Mehler’s formula describes the formal solution of the model operator [BGV,
Thms 4.12, 4.20], [Roe, Prop 12.25]. Interpret the supertrace as a Chern-Weil
theoretic expression to prove the Atiyah-Singer index theorem (5) [BGV,
Thms 4.1–4.3], [Roe, end of chap 12].

Derive from this the Gauß-Bonnet-Chern theorem (2), the Hirzebruch
signature theorem (3), and the Hirzebruch-Riemann-Roch theorem (4)
[BGV, Thm 4.6–4.9], [Roe, Thms 13.7, 13.13]. Some preliminary work on the
Euler classe, L-class and Todd class should have been done in talk 5.

9. Topological K-Theory, 28.6., McDonnell

This talk should be given and prepared in conjuction with talk 10. Prob-
ably, we have to squeeze both into one talk. For a topological space X, the
K-ring K0(X) is the group completion of the monoid of finite rank complex
vector bundles on X under direct sum and tensor product. It behaves like a
cohomology theory, and Bott periodicity is an important feature.
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Define (complex) topological K-theory K0(X) for a compact Hausdorff
space X as the Grothendieck group of the monoid of vector bundles on X, and
define the ring structure [Ha, Sect 2.1], [LM, I.§9–Prop 9.4, Cor 9.9], don’t
introduce classifying spaces. Then explain Bott periodicity (without proof)
[At, Thm 2.2.1], [Ha, Thm 2.11], [LM, Thm I.9.20]. Explain relative K-theory
or K-theory with compact support following [LM, Def I.9.23–I.9.26]. For a
complex vector bundle E → X, introduce the Thom space T (E) [MS, §18]

and state the Thom isomorphism theorem K̃0(X) ∼= K̃0(T (E)) as a gen-
eralisation of Bott periodicity [At, Cor 2.7.12], [LM, Thm C.8]. If time allows,
exhibit Chern-Weil characteristic classes as natural transformations from the
K-theory of a smooth manifold to its de Rham cohomology.

10. The K-theoretic index theorem, 5.7., Recktenwald

The symbol of an elliptic differential operator on a manifold M defines a
K0-class on the Thom space T (T ∗M) of its cotangent bundle. The topological
index is constructed as a pushforward. It is easy to generalise to families and
group actions.

Explain the almost complex structure on the total space of TM , and on
the total space of the normal bundle of TM ↪→ TN for any smooth embed-
ding M ↪→ N [LM, p. 241]; this is the hidden reason why it makes sense to
consider the index in the framework of complex K-theory on real manifolds.
State the Whitney embedding theorem (without proof) and construct the
topological index [LM, Def III.13.1]

K̃0(T (T ∗M)) −→ K̃0(T (T ∗RN )) ∼= K̃0(S2N )
∼=←− K̃0(S0) ∼= Z .

Explain the two axiomatic properties [LM, p. 247].
Only if talks 9 and 10 are given separately, explain how to deduce a coho-

mological index theorem for general elliptic operators, and (5) for Dirac
operators [LM, Thm III.13.8–10]. If there is even more time, describe the topo-
logical and the analytical family index for proper submersions p : E → B.

11. Index theory and modular forms, 12.7., Wendland

Witten composed new genera by taking formal sums over a countable family
of Atiyah-Singer-type index formulas. If the underlying manifold admits par-
ticular structures (string structures in the real case, Calabi-Yau metrics in the
complex case), one obtains modular forms. This talk should explain this result
and present some applications. One may also touch upon the highly speculative
Stolz programme on understanding manifolds of positive Ricci curvature, or on
the interpretation of the Witten genus in terms of vertex operator algebras.

12. Integrality and applications, 19.7., Wang

The index is always an integer, but its cohomological representation is a priori
only rational. These two facts can be combined to give interesting applications
and construct subtle secondary invariants in differential topology. The Atiyah-
Patodi-Singer theorem sheds more light on these secondary invariants.
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Even-dimensional complex projective spaces have a non-integral Â-genus,
hence cannot be spin. Rokhlin’s theorem says that the signature of a
4-dimensional spin manifold is divisible by 16 (example: K3-surfaces) [Roe,
Thm 13.9] [LM, Cor. IV.1.2].

The Eells-Kuiper invariant uses integrality of the Â-genus to detect all 28
smooth structures on the topological S7. It would be nice to mention Donnelly’s
intrinsic description of the Eells-Kuiper invariant using η-invariants and its
extension to a Z-valued invariant for manifolds with positive scalar curvature
by Kreck-Stolz [Go1, sect 4.c].

13. The Grothendieck-Riemann-Roch theorem, 26.7., Hörmann

The Grothendieck-Riemann-Roch theorem relates the pushforward functors
in (algebraic) K-theory and cohomology for proper maps of algebraic varieties.
The pushforward in K-theory is similar to the “topological index” used in the
K-theoretic embedding proof of the index theorem (talk 10), indeed, this proof
was probably inspired by Grothendieck-Riemann-Roch. It would be nice if the
commutative diagram underlying the theorem could be explained and related
to a similar diagram relating topological K-theory and cohomology.
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