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Abstract. We give a survey on η-invariants including methods of compu-
tation and applications in differential topology.

Introduction

The η-invariant has been introduced by Atiyah, Patodi and Singer as a
boundary contribution in an index theorem for elliptic operators in the series
of papers [2]–[5]. There are several invariants of odd-dimensional manifolds M
in differential topology that are originally defined by finding a compact mani-
fold N with boundary ∂N = M and evaluating certain characteristic numbers
on N . The Atiyah-Patodi-Singer index theorem 1.1 often allows to compute
these invariants in terms of η-invariants and other magnitudes that can be
defined directly on M without choosing N first. Sometimes this leads to gener-
alisations of these invariants to manifolds that are not 0-cobordant. However, to
determine such an invariant for a given manifold M , one needs ways to compute
η-invariants of operators defined on M without using the Atiyah-Patodi-Singer
index theorem.

In the present paper, we give a short survey on applications of η-invariants,
with a focus on situations where the corresponding η-invariants can be com-
puted. The η-invariant also appears in possible generalisations of the analytic
torsion, in conformal geometry, and in the definition of certain smooth exten-
sions of topological K-theory. To keep this article reasonably short, we will not
touch upon these and several other issues.

We start by reviewing the definition of η-invariants as spectral invariants in
section 1. We also review the Atiyah-Patodi-Singer theorem and some of its
immediate consequences. We list some examples where η-invariants have been
computed directly. Sometimes it is easier to compute η-invariants of modified
operators first and to determine their difference to the original η-invariants, see
sections 2.c and 4.b.

The Atiyah-Patodi-Singer theorem has generalisations in different directions.
In section 2, we consider families of manifolds, group actions and orbifolds.
The corresponding generalisations of Theorem 1.1 involve generalisations of
η-invariants that are sometimes easier to compute.

In section 3, we discuss the behaviour of η-invariants for direct images under
proper maps and under gluing constructions. These methods sometimes give
rise to explicit computations, see section 4.e.
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Finally, in section 4, we discuss some applications of η-invariants mainly to
differential topology, but also to questions ranging from algebraic K-theory to
Riemannian manifolds of positive scalar curvature.

The author wishes to thank M. Braverman, U. Bunke, D. Crowley, P. Piazza
and A. Ranicki for some helpful comments and explanations.

1. The Atiyah-Patodi-Singer η-invariant and related invariants

The η-invariant of a selfadjoint elliptic differential operator on an odd-
dimensional manifold M first appeared in the Atiyah-Patodi-Singer index theo-
rem for manifolds N with boundary M , which was announced in [2] and proved
in [3]. They already noted that the η-invariant was related to other topological
invariants known at the time.

1.a. The index theorem for manifolds with boundary. Let N be a com-
pact Riemannian manifold with boundary M = ∂N , and let A : Γ(E+) →
Γ(E−) be an elliptic differential operator on N . Assume that a neighbour-
hood U of M in N is isometric to a product M × [0, ε), that ν : E+|U → E−|U
is a vector bundle isomorphism, and that E±|U are identified with E±|M× [0, ε)
in such a way that on U ,

(1.1) A|Γ(E+|U ) = ν ◦
( ∂
∂t

+B
)
,

where ∂
∂t denotes differentiation in the direction of [0, ε) and B is a selfadjoint

elliptic differential operator acting on smooth sections of E+|∂N →M .
A typical example consists of a Dirac operator A = D+

N on an even-
dimensional manifold. With

ν = cN

( ∂
∂t

)
: E+|U → E−|U ,

one can construct a Clifford multiplication cM of TM on E+|M , such that

cN (v) = ν ◦ cM (v) for all v ∈ TM .

Then (1.1) holds with B = DM a Dirac operator on the odd-dimensional bound-
ary M .

There are topological obstructions against local elliptic boundary conditions
for the operator A on N of (1.1). However, there are elliptic spectral boundary
conditions on each connected component of M , inspired by replacing U by
an infinite cylinder M × (−∞, ε) and imposing L2-boundary conditions in the
special case that B is invertible. Concretely, one restricts A and its adjoint A∗

to

(1.2)
Γ<(E+) =

{
σ ∈ Γ(E+)

∣∣ P≥(σ|M ) = 0
}
,

Γ≤(E−) =
{
τ ∈ Γ(E−)

∣∣ P<(ν−1τ |M ) = 0
}
,

where P≥, P< : Γ(E+|M )→ Γ(E+|M ) denote spectral projections onto the non-
negative and the negative eigenspaces of B, respectively. These are the so-called
APS boundary conditions, and one defines

indAPS(A) = ker
(
A|Γ<(E+)

)
− ker

(
A∗|Γ≤(E−)

)
.
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The index of a suitable double of A is given as the integral of a local index
density α0 over the double of N . In the case of a Dirac operator, we know from
the Atiyah-Singer index theorem that

α0 =
(
Â(TN,∇TN ) ∧ ch(E/S,∇E)

)max
,

where ch(E/S,∇E) denotes the twist Chern character form, see [9].
The η-invariant η(B) of B is defined as the value at s = 0 of the meromorphic

continuation of the η-function, that is for Re s� 0 given by

(1.3) ηB(s) =
∑

λ∈Spec(B)\{0}

sign(λ) · |λ|−s =
1

Γ
(
s+1

2

) ∫ ∞
0

t
s−1
2 tr(Be−tB

2
) dt .

It is proved in [5] that the η-function indeed has a meromorphic continuation
and that η(B) = ηB(0) is finite. For a Dirac operator B = DM , one can show
directly that the integral expression in (1.3) converges for Re s > −1, see [15].
One also defines

h(B) = dim kerB .

1.1. Theorem (Atiyah-Patodi-Singer, [2], [3]). Let A be an elliptic differential
operator on a compact manifold N with boundary M = ∂N as in (1.1). Then
the Fredholm index of A under the APS boundary conditions (1.2) is given as

indAPS(A) =
∫
N
α0 −

η + h

2
(B) .

The signature operator of a 4k-dimensional compact oriented manifold with
boundary is an important special case. Here, one considers the symmetric
bilinear form on

im
(
H2k(N, ∂N ; R)→ H2k(N ; R)

)
given by the evaluation of the cup product of two such classes on the relative
fundamental cycle [N, ∂N ]. The signature of this form is denoted by sign(N).

On the odd-dimensional manifold M = ∂N , the bundle ΛevT ∗M of even
differential forms constitutes a Dirac bundle. The Hodge star operator ∗ inter-
changes even and odd forms. The Dirac operator B = ±(∗d− d∗) on ΛevT ∗M
is usually named the odd signature operator on M .

1.2. Theorem (Atiyah-Patodi-Singer, [3]). Let N be a 4k-dimensional manifold
with totally geodesic boundary M = ∂N , and let B denote the odd signature
operator on M , then

sign(N) =
∫
N
L(TN)− η(B) .

Comparing with Theorem (1.1), one notes that the boundary operator con-
sists of two copies of the odd signature operator. Also, the index of the signature
operator on N under APS boundary conditions is not precisely sign(N) due to
the asymmetric treatment of ker(B). In fact, if h(B) was present on the right
hand side in Theorem (1.2), the equation would not be compatible with a change
of orientation. The most prominent feature for applications is the fact that the
signature of N is a topological invariant, in contrast to most other APS indices,
which depend on the geometry of N near its boundary.
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Some elementary properties of η-invariants can be deduced directly from
Theorem 1.1 and 1.2. For simplicity, we will stick to Dirac operators, and we
let B denote the odd signature operator.

If P (V,∇V ) ∈ Ω•(M) denotes a Chern-Weil form associated to a vector
bundle V → M with connection ∇V and an invariant polynomial P , we
let P̃ (V,∇V,0∇V,1) ∈ Ω•(M)/ im d denote the Chern-Simons class satisfying

(1.4) dP̃
(
V,∇V,0,∇V,1

)
= P

(
V,∇V,1

)
− P

(
V,∇V,0

)
.

The Dirac operator D on a Dirac bundle E → M depends on smoothly on
the Riemannian metric g on M and on a Clifford multiplication and a con-
nection ∇E on E that is compatible with the Levi-Civita connection. Ap-
plying Theorems 1.1 and 1.2 to an adapted Dirac operator DN on the cylin-
der N = M × [0, 1] gives a variation formula.

1.3. Corollary (Atiyah-Patodi-Singer, [3]). Let (gs)s∈[0,1] be a family of Rie-
mannian metrics on M with Levi-Civita connections ∇TM,s, and let (E, cs,
∇E,s)s∈[0,1] be compatible bundles with Dirac operators Ds

M . Then

(1)
η + h

2
(D1

M )− η + h

2
(D0

M )

=
∫
M

( ˜̂
A
(
TM,∇TM,0,∇TM,1

)
ch
(
E/S,∇E,0

)
− Â

(
TM,∇TM,1

)
c̃h
(
E/S,∇E,0,∇E,1

))
∈ R/Z .

For the odd signature operator (Bs)s∈[0,1], one has

η(B1)− η(B0) =
∫
M
L̃
(
TM,∇TM,0,∇TM,1

)
∈ R .(2)

Thus, η-invariants have similar variation formulas as Cheeger-Simons num-
bers, by which we mean the evaluation of (products of) Cheeger-Simons classes
on the fundamental cycle of an odd-dimensional compact oriented manifold. We
may think of Cheeger-Simons numbers as geometric R/Z-valued refinements of
integral characteristic classes of vector bundles, whereas η-invariants are geo-
metric R/Z-valued refinements of indices of Dirac operators. In general, these
numbers are difficult to compare.

1.4. Example. Let M be a oriented three-manifold. Then the variation formula
for η(B) of Corollary 1.3 becomes

η(B1)− η(B0) =
1
3

∫
M
p̃1

(
TM,∇TM,0,∇TM,1

)
,

where p̃1 is the Chern-Simons class associated to the first Pontrijagin class. The
variation formula for the associated Cheeger-Simons character p̂1 of a general
vector bundle is(

p̂1

(
E,∇E,1

)
− p̂1

(
E,∇E,0

))
[M ] =

∫
M
p̃1

(
E,∇E,0,∇E,1

)
.
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This implies that 3η(B) is an R-valued refinement of p̂1(TM,∇TM )[M ].
For other vector bundles, we do not get a natural R-valued refinement
of p̂1(E,∇E)[M ] ∈ R/Z due to the presence of a nontrivial gauge group.

For higher dimensional manifolds, the situation is more complicated due to
the formulas for the multiplicative sequences,

Â = 1− p1

24
+

7p2
1 − 4p2

27 · 32 · 5
− 31p3

1 − 44p1p2 + 16p3

210 · 33 · 5 · 7
± . . . ,(1.5)

L = 1 +
p1

3
− p2

1 − 7p2

45
+

2p3
1 − 13p1p2 + 62p3

33 · 5 · 7
± . . .(1.6)

Finally, one can use Corollary 1.3 to count sign changes of eigenvalues of Ds
M

for s ∈ [0, 1] by comparing the actual difference of η-invariants with the value
predicted by the local Chern-Simons variation terms. The so-called spectral
flow of the family (Ds

M )s∈[0,1] is given by

(1.7) sf
(
(Ds

M )s∈[0,1]

)
=
η + h

2
(D1

M )− η + h

2
(D0

M )

−
∫
M

( ˜̂
A
(
TM,∇TM,0,∇TM,1

)
ch
(
E/S,∇E,0

)
+ Â

(
TM,∇TM,1

)
c̃h
(
E/S,∇E,0,∇E,1

))
∈ Z .

If the Dirac bundles for s = 0 and s = 1 are isomorphic, then the spectral flow
defines an odd index sf : K1(M)→ Z, see [5].

1.b. Direct computation of η-invariants. For generic Riemannian mani-
folds, it seems impossible to determine the spectrum of a given differential
operator B. And even if one succeeds, one often needs techniques from analytic
number theory in order to describe the function ηB(s) explicitly and compute
its special value η(B) = ηB(0) at s = 0. This section is devoted to a few exam-
ples where this has been done. All examples are locally homogeneous spaces,
and representation theory plays a prominent role in the determination of the
relevant spectrum.

For the operator Bλ = i ddt + λ on a circle of length 2π, the η-invariant is
computed in [2] as

η(Bλ) =

{
0 λ ∈ Z ,

1− 2(λ− n) λ ∈ (n, n+ 1) .

Next, consider three-dimensional Berger spheres. Thus, one rescales the fi-
bres of the Hopf fibration S3 → S2 by λ > 0, while the metric orthogonal to
the fibres is unchanged. This metric is still U(2)-invariant. Let Dλ denote the
untwisted Dirac operator on S3

λ. Using U(2)-invariance and a suitable Hilbert
basis of sections of the spinor bundle, Hitchin determined the eigenvalues of Dλ
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in [51] as follows,

λ

2
+
p

λ
with multiplicity 2p ,

λ

2
±
√

4pqλ2 + (p− q)2

λ
with multiplicity p+ q ,

for p, q > 0. From these values, Hitchin computes the η-invariant explicitly and
obtains

η(Dλ) = −(λ2 − 1)2

6
for 0 < λ < 4. For larger values of λ, the formula holds only up to spectral flow,
see (1.7). In his diploma thesis [49], Habel does analogous computations for a
few higher dimensional Berger spheres. Bechtluft-Sachs gets the same result in
low dimensions by applying Theorem 1.1 to disk bundles over CPn [8].

Let Γ ⊂ PSL(2,R) be a cocompact subgroup, then M = PSL(2,R)/Γ is
a compact three-manifold, Seifert fibred over a hyperbolic surface. Seade and
Steer compute η(Dλ) when Γ is a Fuchsian group [77]. The parameter λ refers
to the length of the generic fibre as in the case of the Berger sphere. As in
Hitchin’s computations, representation theory plays a prominent role in these
computations. The results of Seade and Steer are generalised to noncompact
quotients of finite volume by Loya, Moroianu and Park in [63].

The spectrum of an untwisted Dirac D operator on a flat torus M depends
on the spin structure and is always symmetric, so η(D) = 0. However, among
the Bieberbach manifolds M/Γ, where Γ ⊂ SO(n) is a finite subgroup that
acts freely on M , there exist examples with asymmetric spectra and non-
vanishing η-invariants. Pfäffle computes the spectra and the η-invariants of
all three-dimensional examples in [72]. Higher-dimensional examples are stud-
ied by Sadowski and Szczepánski in [75], by Miatello and Podestá in [66], and
by Gilkey, Miatello and Podestá in [40]. In all these cases, the η-invariant of an
untwisted Dirac operator can be expressed in number theoretic terms.

Similar computations are also possible for spherical space forms Sn/Γ
with Γ ⊂ SO(n) a finite subgroup. In [24], Cisneros-Molina gives a general
formula for the spectra of Dirac operators on M = S3/Γ twisted by flat vec-
tor bundles and computes the corresponding η-invariants. These η-invariants
are closely related to the ξ-invariant of M and the Γ-equivariant η-invariants
of S3, see section 4.a. Seade [76] and Tsuboi [79] compute η-invariants for cer-
tain spherical space forms as average over equivariant η-invariants, see also [7].
Degeratu extends these computations to orbifold quotients in [33] and exhibits
a relation with the Molien series.

In [68], Millson expresses the η-invariant of the odd signature operator on a
compact hyperbolic manifold as a special value of a ζ-function associated to the
closed geodesics on M and their holonomy representations and Poincaré maps.
This result is extended to Dirac operators on locally symmetric spaces M of
noncompact type by Moscovici-Stanton [69]. A generalisation to the finite-
volume case is given by Park [71].

The η-invariant of a Dirac operator on an interval [0, 1], twisted by a sym-
plectic vector space (V, ω), with different Lagrangian boundary conditions L0,
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L1 ⊂ ker(DN ) is computed by Cappell, Lee and Miller in [22]. It is related to
the Maslov index of Lagrangians in (V, ω). Indeed, Maslov indices naturally
occur when considering η-invariants on manifolds with boundary, for example
in generalisations of Theorem 3.4.

2. Families, group actions, and orbifolds

Instead of regarding Dirac operators on a single manifoldN , one may consider
families of manifolds, or manifolds with the action of some Lie-group, or even
orbifolds with boundary. Under certain conditions, Theorems (1.1) and (1.2)
extend to these situations. We state a few of these generalisations below and
indicate relations between them. We also explain how ordinary η-invariants can
be computed using equivariant methods.

2.a. Families of manifolds with boundary. Assume that p : W → B is a
proper submersion with typical even-dimensional fibre N , such that the fibre-
wise boundaries form another submersion V → B. Let gTN be a fibrewise
Riemannian metric and let THW → W be a horizontal complement for the
fibrewise tangent bundle TN = ker dp ⊂ TW . These data uniquely define a
generalised Levi-Civita connection ∇TN on TN →W . Let E = E+⊕E− →W
be a fibrewise Dirac bundle, i.e., TN acts on E by Clifford multiplication, and
there is a compatible metric gE and a compatible connection ∇E on E. Then
one can define a family of Dirac operators DN on the fibres of p. We assume
that condition (1.1) is satisfied on each fibre, and we also assume that the ker-
nels of the boundary operators DM form a family over B. Then let us assume
for simplicity that the kernels of the family DN under APS boundary conditions
also form a family over B.

In this situation, there exist natural families of Bismut-Levi-Civita super-
connections (At)t∈(0,∞) and (Bt)t∈(0,∞) on the infinite dimensional vector bun-
dles p∗E → B and p∗(E+|V ) → B. These superconnections define ordinary
connections ∇H , ∇K± on H = ker(DM ) → B and on K± = ker(D±N ) → B.
The η-invariant generalises to a natural η-form

(2.1) η̃(B) =
1√
π

∫ ∞
0

tr
(
∂Bt
∂t

e−B2
t

)
dt ∈ Ω•(B) .

Note that the component of degree 0 is η̃(B)[0] = η
2 (B).

2.1. Theorem (Bismut-Cheeger, [12], [13], [14]). Under the assumptions above,

ch
(
K+,∇K+)− ch

(
K−,∇K−

)
=
∫
W/B

Â
(
TN,∇TN

)
ch
(
E/S,∇E

)
− η̃(B)− 1

2
ch
(
H,∇H

)
∈ H•(B; R) .

There exists a similar generalisation of Theorem 1.2. Note that the kernels
of the signature operator and the odd signature operator on the boundaries
automatically form bundles over B by Hodge theory.

Melrose and Piazza relax the condition that the kernels of the boundary
operator DM form a bundle over B. For the definition of boundary conditions,
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it is sufficient to have a spectral section, see [65]. It is also not necessary to
demand that kerDN forms a bundle over B, since the virtual index bundle
always exists.

2.b. Group actions on manifolds with boundary. Theorems 1.1 and 1.2
generalise to manifolds with group actions in the same way that the Atiyah-
Singer index theorem becomes the Atiyah-Segal fixpoint theorem. In particular,
from invariants on the boundary one can conclude the existence of fixpoints in
the interior.

Let N and DN be as in section 1.a. Let G be a group that acts on N
by isometries. Assume that this action also lifts to the Dirac bundle E, and
that the induced action on Γ(E) commutes with DN . Then G also acts on M
and E+|M such that the induced action on sections commutes with DM . One
can define an equivariant index and an equivariant η-invariant for all g ∈ G by

(2.2)

indAPS,g(DN ) = tr(g|kerD+
N

)− tr(g|kerD−N
)

ηDM ,g(s) =
∑

λ∈Spec(DM )\{0}

sign(λ) · |λ|−s · tr(g|Eλ)

=
1

Γ
(
s+1

2

) ∫ ∞
0

t
s−1
2 tr

(
g DM e−tD

2
M

)
dt .

The equivariant η-function has a meromorphic continuation to C, and 0 is a
regular value. Again, we put ηg(DM ) = ηDM ,g(0). If one generalises the proof
of Theorem 1.1 to this new setting, then the index density α0 localises to the
fix-point set Ng of g. For a Dirac operator, we will write the equivariant index
density as

Âg
(
TN,∇TN

)
chg
(
E/S,∇E

)
∈ Ω•(Ng; o(Ng)) ,

where o(Ng) denotes the orientation line bundle. Note that Âg(TN,∇TN ) itself
is a product of Â(TNg,∇TNg) and a contribution from the action of g on the
normal bundle of Ng in N . Both forms are unique only up to a sign that
depends on the choice of a lift of g to the spin group of Ng, but their product
is well-defined, see the discussion in [9]. We also put hg(DM ) = tr(g|kerDM ).

2.2. Theorem (Donnelly, [36]). The G-equivariant index is given by

indAPS,g(DN ) =
∫
Ng

Âg
(
TN,∇TN

)
chg
(
E/S,∇E

)
− ηg + hg

2
(DM ) .

2.3. Remark. The integral vanishes if g acts freely on N , and the equivariant
index is always a virtual character of G. This has two consequences.

(1) There is an analogue of Corollary 1.3 with values in functions on G
modulo virtual characters. For each g ∈ G, the local contribution is
an integral over Mg. Hence, equivariant η-invariants are rigid modulo
virtual characters for g ∈ G that act freely on M .

(2) Let DM be a G-equivariant operator and let G0 ⊂ G denote a subset of
elements that act freely on M . If there is no virtual character χ of G
that extends η+h

2 |G0 , and there is a compact manifold N with ∂N = M
and DN as in Donnelly’s theorem, then some elements of g ∈ G will
have fixpoints on N .
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If G is a compact connected Lie group, then the equivariant index theorem
can be stated in a different way. Let g denote the Lie algebra of G. Then
consider Cartan’s complex of equivariant differential forms,

(Ω•G(N), dg) =
(

(Ω•(N)[[g∗]])G, d− ιX
2πi

)
.

Here, a monomial in g∗ of degree ` with values in the k-forms has total degree k+
2`, and ιX denotes the inner product of a differential form with a variable
Killing field X, which is of total degree 1 = −1 + 2. Classical Chern-Weil
theory generalises to G-equivariant vector bundles with invariant connections,
giving classes ÂX , chX with values in the equivariant cohomology

H•G(N ; R) = H•(Ω•G(N), dg) .

The classical equivariant index theorem can be stated in terms of these equi-
variant characteristic classes as explained by Berline, Getzler and Vergne [9].

Following Bismut’s proof of the equivariant index theorem in [10], put

DX,t =
√
tDM +

1
4
√
t
cX ,

where cX denotes Clifford multiplication with the Killing field associated to X ∈
g. The infinitesimally equivariant η-invariant of DM is defined as

(2.3) ηX(DM ) =
2√
π

∫ ∞
0

tr
(∂DX,t

∂t
e−D

2
X,t−LX

)
dt ∈ C[[g∗]] ,

where LX denotes the Lie derivative. We can now state another version of the
equivariant index theorem for manifolds with boundary.

2.4. Theorem ([42]). The equivariant index for g = e−X is given by the formal
power series

indAPS,e−X (DN ) =
∫
N
ÂX
(
TN,∇TN

)
chX

(
E/S,∇E

)
− ηX + he−X

2
(DM ) ∈ C[[g∗]] .

This theorem can be deduced from the Bismut-Cheeger Theorem 2.1 by re-
garding fibre bundles with structure group G and applying the general Chern-
Weil principle.

Another possible proof uses Donnelly’s Theorem 2.2 and Bott’s localisation
formula. Let ϑ = 1

2πig
TN ( · , X) denote the dual of a variable Killing field, then

dX

( ϑX
dXϑX

αX

)
= αX −

αX
eX(ν)

· δ ,

where δ denotes the distribution of integration over the zero-set NX of X,
and eX(ν) denotes the equivariant Euler class of the normal bundle ν → NX .
Note that though the single terms are not defined on all ofN , the equation above
still makes sense in an L1-sense, i.e., after integration over N . Theorem 2.4
follows from Theorem 2.2 and the following result by an application of the
localisation formula. Both proofs are explained in [9] in the case ∂N = ∅.
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2.5. Theorem ([42]). Assume that the Killing field X has no zeros on M . Then

ηX(DM ) = ηe−X (DM ) + 2
∫
M

ϑX
dXϑX

ÂX
(
TM,∇TM

)
chX

(
E/S,∇E

)
∈ C[[g∗]] .

One expects that for sufficiently small X ∈ g, the formal power series in
Theorems 2.4 and 2.5 converge, and that a similar formula also holds if X
vanishes somewhere on M . One also expects that one can apply both theorems
to ge−X , where g ∈ G and X ∈ g with AdgX = X, and the local contributions
are integrated over Ng.

2.6. Remark. In general, the equivariant η-invariant ηg(DM ) is only continuous
in g as long as the fixpoint set Mg varies continuously in g. In particular, it is
usually singular at g = e. The singularity near g = e is encoded in the integral
in Theorem 2.5. Arguing as in Remark 2.3 (2), we see that the singularity of
the integral above at X = 0 contains information about fixpoints of elements
of G on compact G-manifolds N with ∂N = M .

2.c. Homogeneous spaces. It seems that the introduction of families and
group actions is an unnecessary complication if one is mainly interested in
the η-invariants of section 1.a. In the presence of a Lie group action, Theo-
rem 2.5 allows to split the infinitesimal η-invariant ηX(D) into a rigid global
object ηe−X (D) and a locally computable correction term if X 6= 0 every-
where on M . If both terms can computed, then their sum extends continuously
to X = 0 and gives the ordinary η-invariant.

Assume that H ⊂ G are compact Lie groups, and let D be the geomet-
ric Dirac operator on the homogeneous space M = G/H with a normal metric.
In [41], we consider the reductive Dirac operator D̃. It is a selfadjoint differential
operator with the same principal symbol as D, but D̃ is better adapted to homo-
geneous spaces. This operator was independently discovered by Kostant [55].
If G and H are not of the same rank, then most elements g ∈ G act freely
on G/H. By Remark 2.3 (1),

(2.4)
ηg + hg

2
(
D̃
)
− ηg + hg

2
(D) = χ(g)

for all g ∈ G that act freely on M , where the equivariant spectral flow χ is a
virtual character of G. Moreover χ = 0 for the untwisted Dirac operator. On
the other hand, the kernel of the reductive odd signature operator B̃ has no
topological significance, and hence the spectral flow does not vanish in general
for D = B.

Given three compact Lie groups H ⊂ K ⊂ G, one considers the fibra-
tion G/H → G/K with fibre K/H. The equivariant η-invariant ηG(D̃) for G/H
can be computed from the equivariant η-invariant of a reductive Dirac operator
either on the base G/K or on the fibre K/H, whichever is odd-dimensional.
The formula is similar to the adiabatic limit formula in Theorem 2.1, but
an equivariant η-invariant appears instead of an η-form, and no limit has to
be taken. Suppose that S ⊂ T are maximal tori of H and G, we consider
the fibrations G/S → G/H and G/S → G/T . This way, the computation
of ηG(D̃) is reduced in two steps to the computation of an equivariant η-
invariant of a twisted Dirac operator on the flat torus T/S, which vanishes
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unless rkG − rkH = dimT − dimS = 1. Although the formula for ηG(D̃)
in [41] contains representation theoretic expressions, explicit knowledge of the
representations of G is not needed. In particular, the spectrum of D̃ on M is
not computed, in contrast to the examples in section 1.b.

In [43], a formula for the correction term in Theorem 2.5 is given, again using
the fibrations G/S → G/H and G/S → G/T considered above. Combining this
with (2.4), one obtains a formula for ηX+h

e−X
2 (D) up to a virtual character of G.

Evaluating at X = 0 gives η+h
2 (D) ∈ R/Z. By estimation of sufficiently many

small eigenvalues of D and D̃, one can even determine the equivariant spectral
flow. This method is applied to compute the Eells-Kuiper invariant of the
Berger space SO(5)/SO(3) in [45], see section 4.e.

2.d. Orbifolds with boundary. Theorem 1.1 is generalised to orbifolds by
Farsi [38]. For simplicity, we state the version for Dirac operators. Farsi’s
original theorem holds in the generality of Theorem 1.1.

Let M be an n-dimensional orbifold. In particular, for each p ∈ M there
exists a local parametrisation of the form ψ : V → Γp\V ∼= U ⊂ M . Here, the
isotropy group Γp ⊂ O(n) of p is a finite subgroup acting linearly on V ⊂ Rn.
If γ ∈ Γ, let (γ) denote its conjugacy class, and let CΓ(γ) denote its centraliser
in Γ. Then the inertia orbifold ΛM consists of all pairs (p, (γ)) with (γ) a
conjugacy class in Γp. A parametrisation of ΛM around (p, (γ)) is given by

ψ(γ) : CΓ(γ)\V γ → ψ(V γ)× {(γ)} ⊂ ΛM .

In general, the inertia orbifold is not effective. The multiplicity m(p, (γ)) defines
a locally constant function on M that says how many elements of the isotropy
group CΓ(γ) act trivially on the fixpoint set V γ .

An orbifold vector bundle E over M is given by trivialisations of ψ∗E → V
for all parametrisations ψ, together with an action of the isotropy group Γ
on ψ∗E and compatible gluing data. A smooth section is represented locally
by a Γ-equivariant section of ψ∗E. There are natural notions of Dirac bundles
and Dirac operators. Because Γ(E) is a vector space, one can define the index
and the η-invariant of a Dirac operator as before.

On ΛM , one defines characteristic differential forms ÂΛM and chΛM such
that

ψ∗(γ)ÂΛM

(
TM,∇TM

)
=

1
m(γ)

Âγ
(
TM,∇TM

)
∈ Ω•(V γ , o(V γ))

and ψ∗(γ)chΛM

(
E/S,∇E

)
= chγ

(
E/S,∇E

)
∈ Ω•(V γ) .

Apart from the multiplicity, these forms are the same as in Theorem 2.2. In
particular, the signs of both forms depend on the choice of a lift of γ, but
their product is well-defined. The integrand ÂΛM

(
TM,∇TM

)
∧chΛM

(
E/S,∇E

)
on ΛM is the same as in Kawasaki’s index theorem, and on the regular part
of M ∼= M×{id} ⊂ ΛM , it agrees with the classical index density on a manifold.

We now assume that N is an orbifold with boundary M , and that DN , DM

are Dirac operators satisfying (1.1).
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2.7. Theorem (Farsi, [38]). The orbifold index under APS boundary conditions
is given by

indAPS(DN ) =
∫

ΛN
ÂΛN

(
TN,∇TN

)
chΛN

(
E/S,∇E

)
− η + h

2
(DM ) .

If N is a quotient of a compact manifold by a finite group of isometries, then
Theorem 2.7 can be deduced from Theorem 2.2. In general, one combines the
proof of Kawasaki’s index theorem with the proof of Theorem 1.1.

3. Properties of η-invariants

We state some formulas that do not directly follow from the Atiyah-Patodi-
Singer index theorem and its generalisations in the previous section. The for-
mulas are useful to understand properties of secondary invariants derived from
η-invariants as in section 4, and sometimes even to compute them.

3.a. The adiabatic limit. Let p : M → B be proper Riemannian submersion
with fibre F and TM = THM⊕TF with THM = TF⊥ ∼= p∗TB. Write gTM =
gTF ⊕ p∗gTB and define

gTMε = gTF ⊕ 1
ε2
gTB .

The limit ε→ 0 is called the adiabatic limit. As the distance between different
fibres becomes arbitrarily large in the adiabatic limit, heat kernels of adapted
Laplacians localise to a fibrewise operators as ε → 0 for bounded times. This
allows to localise a large part of the integral (1.3) to the fibres of p.

Let (DM,ε)ε>0 be a family of Dirac operators on a bundle E → M that
are compatible with the metrics gTMε . We assume that the connections ∇E,ε
converge to a limit connection ∇E,0. Associated to the limit ε → 0, there
exists a family of superconnections (At)t>0 as in section 2.a. The vertical Dirac
operator DF appears as the degree zero component of A1. We assume that H =
kerDF forms a vector bundle over B. Then we can define the η-form η(A) ∈
Ω•(B) as in (2.1). More precisely, if SB → B is a local spinor bundle on B,
then there exists a fibrewise Dirac bundle W → M such that E = p∗SB ⊗W ,
and we consider the η-form of a superconnection A on p∗W .

The bundle H → B with the connection induced by ∇E,0 becomes a Dirac
bundle on (B, gTB), and one can construct a limit Dirac operator D0

B acting
on H. We assume that DM,ε can be continued analytically in ε to ε = 0.
Then kerDM,ε has constant dimension for all ε ∈ (0, ε0) if ε0 > 0 is sufficiently
small. There are finitely many very small eigenvalues λ = λν(ε) of DM,ε such
that

λν(ε) = O(ε2) and 0 6= λν(ε) for ε ∈ (0, ε0) .

3.1. Theorem (Bismut-Cheeger,[11]; Dai, [30]). Under the assumptions above
and for ε ∈ (0, ε0), one has

lim
ε→0

η(DM,ε) =
∫
B
Â(TB,∇TB)2η(A) + η(D0

B) +
∑
ν

sign(λν(ε)) .
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Both the Levi-Civita connection ∇TM,ε and the connection ∇E,ε converge
as ε→ 0, so one can still define Chern-Simons classes as in (1.4). Moreover, the
spectral flow of (1.7) eventually becomes constant by our assumptions above,
so one can recover η(DM ) from

η + h

2
(DM ) = lim

ε→0

(η + h

2
(DM,ε)− sf

(
(DM,s)s∈(ε,1]

))
+
∫
M

( ˜̂
A
(
TM,∇TM,0,∇TM

)
ch
(
E/S,∇E,0

)
+ Â

(
TM,∇TM

)
c̃h
(
E/S,∇E,0,∇E

))
.

Theorem 3.1 can be generalised to Seifert fibrations. Here, a Seifert fibration
is a map p : M → B, where M is a manifold and B an orbifold, such that locally
for a parametrisation ψ as in section 2.d, p pulls back to

ψ∗p : ψ∗M ∼= V × F → V .

Then we call F the generic fibre of p. Equivalently, a Seifert fibration is a
Riemannian foliation of M with compact leaves. We define metrics gTMε as
above.

Over the inertia orbifold ΛB, we define an equivariant η-form ηΛB(A) such
that

ψ∗(γ̃)ηΛB(A) =
1√
π

∫ ∞
0

tr
(
γ̃
∂At

∂t
e−A2

t

)
dt ∈ Ω•(V γ) .

Again, the sign of ηΛB(A) depends on the choice of a certain lift γ̃ of γ, but the
integrand ÂΛB

(
TB,∇TB

)
2ηΛB(A) in the theorem below is well-defined.

We assume that kerDF forms an orbifold vector bundle over B and de-
fine η(DH

B ) as in section 2.d.

3.2. Theorem ([44]). Under the assumptions above and for ε ∈ (0, ε0), one has

lim
ε→0

η(DM,ε) =
∫

ΛB
ÂΛB

(
TB,∇TB

)
2ηΛB(A) + η

(
DH
B

)
+
∑
ν

sign(λν(ε)) .

It is likely that this result still holds if M is an orbifold, provided the generic
fibres are still compact manifolds.

3.3. Remark. In principle, Theorems 3.1 and 3.2 simplify the computations of η-
invariants and other invariants derived from them as in section 4. However,
the η-forms needed are at least as difficult to compute as the η-invariants of the
fibres. There are explicit formulas for circle bundles in [84] and three-sphere
bundles in [42]. In [31], the Kreck-Stolz invariants of section 4.d are computed
this way for circle bundles. And in section 2.c, we have exhibited a method
of computation if the structure group is compact and the fibre a quotient of
compact Lie groups.

If the family M → B bounds a family N → B as in section 2.a, one can use
the original Atiyah-Patodi-Singer Theorem 1.1 in place of Theorem 3.1, see [8]
for the case of circle bundles. Similarly, one can use Theorem 2.7 in place of
Theorem 3.2 if the generic fibre F bounds a compact manifold and one can
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construct an orbifold fibre bundle N → B that bounds M . Nevertheless, the
computation of the local index density still requires some work.

3.b. Gluing Formulas. The η-invariants of connected sums can be computed
by applying the APS Index Theorem 1.1 to the boundary connected sum M1×
[0, 1] \ M2 × [0, 1] with boundary −(M1#M2) tM1 tM2. Because Pontrijagin
forms are conformally invariant, one can choose the geometry in such a way
that the index density vanishes completely. Hence,

η + h

2
(D1#D2) =

η + h

2
(D1) +

η + h

2
(D2) ∈ R/Z

under suitable geometric assumptions. As a consequence, many of the invari-
ants introduced in section 4 are additive under connected sums. We will now
describe the behaviour of η-invariants under gluing along more complicated
hypersurfaces.

We assume that M can be cut along a hypersurface N in two pieces M1

andM2. We also assume thatN has a neighbourhood U isometric toN×(−ε, ε).
Let A = DM be a Dirac operator on M that is of a form similar to (1.1) on U ,
with B = DN a Dirac operator on N and ν = cM

(
∂
∂t

)
. If DN is invertible, one

can define η-invariants for the operators DMi = DM |Mi under APS boundary
conditions similar to (1.2).

3.4. Theorem (Wojciechowski, [82]; Bunke, [20]). If DN is invertible, then

η(DM ) = η(DM1) + η(DM2) ∈ R/Z .

This formula holds in R up to an integer correction term that is also described
in [20] and [82]. If DN is not invertible, one chooses Lagrangian subspaces L1,
L2 ⊂ ker(DN ), with respect to a symplectic structure on ker(N) defined in
terms of the Clifford volume element on N . The APS boundary conditions
modified by the projections onto these subspaces give rise to selfadjoint op-
erators DMi,Li . Their η-invariants are described by Lesch and Wojciechowski
in [62]. Bunke and Wojciechowski generalise Theorem 3.4 to this setting in [20]
and [83]. Their formula involves the Maslov index of the Lagrangians L1, L2.

Gluing results for η-invariants as in Theorem 3.4 allow to understand the be-
haviour of the secondary invariants of section 4 under operations like surgery.
But since manifolds with boundary appear only as intermediate steps in these
constructions, it would be nice to have a general gluing formula where no man-
ifolds with boundary occur. Bunke states such a result in [20].

3.c. Embeddings. In this section, let ι : M → N be a smooth embedding
of compact spin manifolds. If DM is a Dirac operator on M , one constructs
a K-theoretic direct image DN on N and compares the associated η-invariants.
Hence, the main result of this section is similar in spirit to Theorem 3.1 of
Bismut-Cheeger and Dai.

More precisely, let SM → M and SN → N denote spinor bundles on M
and N . Then the normal bundle ν → M of the embedding has a spinor bun-
dle Sν →M such that SN |M ∼= SM ⊗ Sν. A direct image of a complex vector
bundle V → M consists of a complex vector bundle W = W+ ⊕ W− → N
and a selfadjoint endomorphism A = a + a∗ of W with a : W+ → W−, such
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that A is invertible on N\M and degenerates linearly along M , and one has
an isomorphism kerA ∼= Sν ⊗ V that relates the compression of dA|ν to kerA
to Clifford multiplication by normal vectors. We also assume that V , W and ν
carry compatible metrics and connections, see [17] for details.

Let δM denote the current of integration on M ⊂ N . Then there exists a
natural current γ(W,∇W , A) on N such that

dγ(W,∇W , A) = ch(W+,∇W+
)− ch(W−,∇W−

)− Â−1(ν,∇ν)ch(V,∇V )δM .

3.5. Theorem (Bismut-Zhang, [17]). Under the assumptions above,
η + h

2
(DW+

N )− η + h

2
(DW−

N ) =
η + h

2
(DV

M ) +
∫
N
Â(TN,∇TN )γ(W,∇W , A)

+
∫
M

˜̂
A
(
TN |M ,∇TM⊕ν ,∇TN

)
Â−1(ν,∇ν)ch(V,∇V ) ∈ R/Z .

One can get rid of the last term on the right hand side by assuming that M
is totally geodesic in N . Moreover, if A is ∇W -parallel outside a small neigh-
bourhood of M in N , then γ(W,∇W , A) is supported near M . In this case, the
difference of the η-invariants of DW+

N and DW−
N localises near M . On the other

hand, let M = ∅, so a : W+ →W− is an isomorphism of vector bundles. Then
Theorem 3.5 reduces to Corollary 1.3 (1) with gs constant.

3.6. Remark. Theorem 3.5 is formally similar to Theorem 3.1. In fact, since
every proper map F : M → N can be decomposed into the embedding M →
M ×N given by the graph of F , followed by projection onto N , both theorem
can be combined to compute η-invariants of direct images under proper maps.
These direct images carry additional geometric information (like a connection),
so one would like to have a generalisation of topological K-theory that takes
care of the relevant additional data. In principle, some kind of smooth K-theory
should be the right choice for this, but it seems difficult to construct a smooth
K-theory that covers both proper submersions and embeddings.

4. Differential topological invariants

We have seen that η-invariants have local variation formulas with respect to
variations of the geometric structure, but they still contain global differential-
topological information. The common theme of the following sections will be
the construction of invariants that do not depend on the geometric structure of
the manifold.

4.a. Invariants of flat vector bundles. Let α : π1(M)→ U(n) be a unitary
representation of the fundamental group, then Fα = M̃ ×α Cn → M is a
flat Hermitian vector bundle with holonomy α. In particular, we may regard
the twisted odd signature operator Bα acting on even Fα-valued smooth forms
onM . Because ker(Bα) = Hev(M ;Fα) is independent of the Riemannian metric
on M , the variation formula in Corollary 1.3 becomes

η(B1
α)− η(B0

α) =
∫
M
nL̃
(
TM,∇TM,0,∇TM,1

)
∈ R .

Note that α enters on the right hand side only through its rank n = ch(Fα).
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4.1. Theorem (Atiyah-Patodi-Singer, [4]). The ρ-invariant

ρα(M) = η(Bα)− n η(B) ∈ R

is a diffeomorphism invariant of M and α.

If α factors through a finite group G, one can consider the compact mani-
fold M̄ = M̃/ kerα. Then G acts on M̄ with quotient M , and one can com-
pute ρα(M) from the equivariant signature η-invariants ηg(M̄) of M . This
proves in particular that ρα(M) is rational in this case. The equivariant η-
invariants here are related to the invariants σg(M) considered in [6].

If π1(M) is torsion free and a certain Baum-Connes assembly map is an
isomorphism, then ρα(M) is a homotopy invariant. This is proved by Keswani
in [53] and generalised by Piazza and Schick [73], earlier similar results are due
to Neumann [70], Mathai [64] and Weinberger [81]. Hence for such fundamental
groups, ρα(M) behaves almost as a primary invariant.

If one replaces the odd signature operator in the construction of ρα(M) by
a different Dirac operator D on M , one gets similar invariants with values
in R/Z due to the possible spectral flow. However, instead of diffeomorphism
invariants, one now obtains cobordism invariants.

4.2. Theorem (Atiyah-Patodi-Singer, [4], [5]). The ξ-invariant

ξα(D) =
η + h

2
(Dα)− n · η + h

2
(D) ∈ R/Z

is a cobordism invariant in the sense that ξα(D) = 0 if there exists a compact
manifold N with M = ∂N such that D extends to an operator on N in the
sense of (1.1) and α extends to a representation of π1(N).

The representation α defines a class [α] ∈ K−1(M ; R/Z) and the symbol of D
gives σ ∈ K1(TM). Then there exists a topological index Ind[α](σ) ∈ R/Z, and

ξα(DM ) = Ind[α](σ) .

4.3. Example. If M is spin and SM is a fixed spinor bundle on M , then all
other spinor bundles arise by twisting SM with real line bundles. In particular,
the difference of η+h

2 (D) for different spin structures is a ξ-invariant. Real line
bundle are classified by H1(M ; Z/2Z). Dahl investigates these ξ-invariants for
spin structures induced by the mod 2 reduction of integer classes, and also their
dependence on the initial spin structure in [29].

It is possible to define ξα(D) ∈ C/Z for flat vector bundles associated to
non-unitary representations α : π1(M) → Gl(n,C), see [5], [52]. In this case,
the imaginary part of ξα(D) is related to the Kamber-Tondeur classes (also
known as Borel classes) of α. Choose a Hermitian metric on Fα and a unitary
connection ∇u on Fα and let Du be the Dirac operator twisted by (Fα,∇u).
Arguing as in [16],

Im ξα(D) = Im
(
η + h

2
(Dα)− η + h

2
(Du)

)
=
(
Â(TM) Im c̃h

(
Fα,∇u,∇α

))
[M ] ,
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and Im c̃h
(
Fα,∇u,∇α

)
∈ Hodd(M ; R) represents the Kamber-Tondeur class.

Assume that M is an m-dimensional homology sphere, then the fundamental
group Γ = π1(M) satisfies Γ = [Γ,Γ]. Let Fα →M be associated to a represen-
tation α : Γ → Gl(n,C), classified by a map M → BGL(n,C). Then Quillen’s
plus construction by functoriality gives an element [M,α] of the algebraic K-
group Km(C) = πm(BGL(n,C)+) by

Sm = M+ −→ BGL(n,C)+ .

If m is odd, clearly Â(TM) = 1 ∈ Hev(M ; Q) because M is a homology sphere,
in particular, Im ξα(D) = Im c̃h

(
Fα,∇u,∇α

)
[M ] then gives the Borel regulator

of [M,α] ∈ Km(C), see [52]. Jones and Westbury prove that the map (M,α) 7→
ξα(D) induces an isomorphism K1(C) ∼= C/Z for m = 1, and an isomorphism
of the torsion subgroup of Km(C) with Q/Z for m > 1 odd.

4.4. Example. Let M = Γ\SL(2,C)/SU(2) be a hyperbolic homology three-
sphere, and let α : Γ → SL(2,C) be the representation corresponding to the
embedding of Γ as a cocompact subgroup. By [52],

Im ξα(D) = − 1
4π2

vol(M) ,

which proves that [M,α] is never torsion.
Jones and Westbury also show that all torsion elements of K3(C) can be

realised as [M,α] where M now is a Seifert fibred three-manifold. A similar
analysis of K3(R) is done in [25].

The classical Lichnerowicz theorem asserts that a spin Dirac operator on a
closed spin manifold N has vanishing index if N carries a metric of positive
scalar curvature κ > 0. It is shown in [4] that Lichnerowicz’ theorem extends
to compact spin manifolds N with totally geodesic boundary M = ∂N . If N
has κ > 0, then so does M , so ind(DN ) = h(DM ) = 0 for a spin Dirac opera-
tor DN on N , and Theorem 1.1 becomes∫

N
Â(TN,∇TN ) =

1
2
η(DM ) .

The analogous statement also holds for the Dirac operator Dα twisted by a flat
vector bundle on N associated to α : π1(N)→ U(n).

Let us call two closed Riemannian spin manifolds (M0, g0), (M1, g1) spin+-
cobordant if there exists a compact Riemannian spin manifold (N, g) with totally
geodesic boundary (M1, g1) − (M0, g0). If M0 = M = M1 and there exists a
family (gt)t∈[0,1] of positive scalar curvature metrics, then the metric gϕ(t/a)⊕dt2
on N = M × [0, a] has κ > 0 for a sufficiently large, where ϕ : [0, 1] → [0, 1]
is smooth and locally constant 0 (1) near 0 (1). Thus metrics in the same
connected component of the moduli space of positive scalar curvature metrics
are spin+-cobordant.

4.5. Theorem (Atiyah-Patodi-Singer, [4]; Botvinnik-Gilkey [18]). The number

ξ̄α(M, g) = η(Dα)− n · η(D) ∈ R
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is a spin+-cobordism invariant in the sense that ξ̄α0(M0, g0) = ξ̄α1(M1, g1)
if (N, g) is a spin+-cobordism of (M0, g0) and (M1, g1) and α0, α1 extend to
a representation of π1(N).

This result is used by Botvinnik and Gilkey to construct and detect Riemann-
ian metrics with κ > 0 lying in countably many different connected components
in the moduli space of positive scalar curvature metrics on M , whenever M has
a non trivial finite fundamental group and admits at least one metric of positive
scalar curvature [18], [19]. Apart from the computation of ξ̄α for sufficiently
many examples, the proof relies on the surgery techniques for positive scalar
curvature metrics introduced by Gromov and Lawson in [46]. Using various
generalisations of η-invariants, the results of Botvinnik-Gilkey are extended to
manifolds M whose fundamental group contains torsion by Leichtnam and Pi-
azza [61] and Piazza and Schick [74]. Other (and in fact earlier) results in this
direction will be discussed at the end of section 4.c.

On the other hand, if π1(M) is torsion free and a certain Baum-Connes
assembly map is an isomorphism, then ξ̄α(D) = 0 for the untwisted Dirac
operator D by a result of Piazza and Schick [73]. Hence, for such fundamental
groups, the invariant ξ̄α(D) behaves similar as the index of the untwisted Dirac
operator in Lichnerowicz’ theorem.

4.b. The Adams e-invariant. In this subsection, we regard a framed bordism
invariant. Recall that a closed manifold M is framed by an embedding M ↪→ Rn

for n sufficiently large together with a trivialisation of the normal bundle ν →M
of the embedding. This defines a stable parallelism of TM , i.e., a trivialisation
of TM ⊕ Rn−m, because

TM ⊕ Rn−m ∼= TM ⊕ ν ∼= M × Rn .

In fact, framings and stable parallelisms are equivalent notions. By the
Pontrijagin-Thom construction, the framed bordism classes of manifolds of di-
mension m are in bijection with the m-th stable homotopy group πsm of spheres.

Let M be a framed closed manifold of dimension 4k − 1 with parallelism π.
Then M carries a preferred spin structure. Because the spin cobordism
group in dimension 4k − 1 is trivial, there exists a compact spin manifold N
with ∂N = M . Because TM is stably trivial, there exists a well-defined relative
class Â(TN) ∈ H•(N,M ; Q) and one defines

(4.1) e(M,π) =

{
Â(TN)[N ] if k is even, and
1
2Â(TN)[N ] if k is odd .

On the other hand, since TM is stably trivial, we can consider the Chern-
Simons class ˜̂

A(TM,∇TM ,∇π), where ∇TM denotes the connection induced
on TM ⊕ Rn−m by the Levi-Civita connection with respect to a Riemannian
metric, and ∇π the connection induced by the trivialisation. It follows from
Corollary 1.3 that

η + h

2
(DM ) +

∫
M

˜̂
A
(
TM,∇TM ,∇π

)
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is invariant under variation of g modulo Z if k is even, and modulo 2Z if k is
odd due to a quaternionic structure on the spinor bundle of M .

4.6. Theorem (Atiyah-Patodi-Singer, [4]). The e-invariant of a framed 4k−1-
dimensional manifold (M,π) is given by

e(M,π) = ε(k)
(
η + h

2
(DM ) +

∫
M

˜̂
A
(
TM,∇TM ,∇π

))
∈ Q/Z

with ε(k) = 1 if k is even and ε(k) = 1
2 if k is odd.

Seade uses this formula to determine the e-invariants of quotients of S3 in [76].

4.7. Example. Let H(n) ⊂ Gln+2(R) denote the 2n+ 1-dimensional Heisenberg
group and let Γ(n) = H(n) ∩ Gln+2(Z) be the subgroup with integer entries.
Then TH(n) is trivialised by right translation, and this descends to a triviali-
sation π of TH(n)/Γ(n). For odd n = 2k − 1, the e-invariant is calculated by
Deninger and Singhof in [34],

e(H(n)/Γ(n), π) = −(−1)kε(k)ζ(−n) + δ(n) ,

where δ(1) = 1
2 and δ(n) = 0 otherwise. Here ζ is the Riemann zeta function.

Comparing with the possible values of e(M,π), one sees that e(H(n)/Γ(n)) is
a generator of im(e : πs4k−1 → Q/Z) for odd k and twice a generator for even k.

For the proof, the Dirac operator D is replaced by D̃, where D̃ − D is an
operator of order 0. The spectrum and the η-invariant of D̃ are computed
explicitly. Since e(H(n)/Γ(n), π)− ε(k) · η+h

2 (D̃) ∈ R/Z is given as the integral
of a locally defined invariant density on H(n)/Γ(n), an argument involving
finite covering spaces allows to reconstruct the e-invariant from the η-invariant
of the modified operator D̃.

Bunke and Naumann give a similar description of the f -invariant [21]. Their
formula uses η-invariants on manifolds with boundary that are related to a
certain elliptic genus.

4.c. The Eells-Kuiper invariant. In this section, we consider closed oriented
spin manifolds M of dimension m = 4k − 1 such that

(4.2) H4l(M ; R) = 0 for all l ≥ 1 .

If M bounds a compact spin manifold N , this conditions allows to define rel-
ative Pontrijagin classes pj(TN) ∈ H4j(N,M ; Q) for 1 ≤ j < k. We express
the universal characteristic classes Â and L in terms of Pontrijagin classes as
in (1.5), (1.6). Then there exists a unique constant tk ∈ Q such that the homo-
geneous component (Â − tkL)[4k] in degree 4k does not involve pk. With ε(k)
as in Theorem 4.6, the Eells-Kuiper invariant of M is defined in [37] as

(4.3) µ(M) = ε(k)
(
tk sign(N) + (Â− tkL)(TN)[N,M ]

)
∈ Q/Z .

Condition (4.2) allows one to express the Pontrijagin forms pj(TM,∇TM )
with respect to some Riemannian metric g on M as

(4.4) pj(TM,∇TM ) = dp̂j(TM,∇TM )
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for 1 ≤ j < k. Moreover, p̂j(TM,∇TM ) ∈ Ω4j−1(M)/ im d is unique be-
cause H4j−1(M ; R) = 0 by Poincaré duality. Replacing one factor pj in each
monomial of (Â−tkL)[4k](TM) by p̂j , we obtain a natural class α(TM,∇TM ) ∈
H4k−1(M ; R) = Ω4k−1(M)/ im d such that

α
(
TM,∇TM,1

)
− α

(
TM,∇TM,0

)
=
( ˜̂
A− tkL̃

)(
TM,∇TM,0,∇TM,1

)
for any two connections ∇TM,0,∇TM,1 on TM . Note that α does not depend
on the choice of the factors pj above, because

(pi p̂j − p̂i pj)
(
TM,∇TM

)
= d
(

(p̂i p̂j)
(
TM,∇TM

))
.

Let D again be the spin Dirac operator and B the odd signature operator on M .
The following result is a consequence of Theorems 1.1 and 1.2.

4.8. Theorem (Donnelly, [35]; Kreck-Stolz, [56]). The Eells-Kuiper invariant
of M equals

µ(M) = ε(k) ·
(η + h

2
(D)− tk η(B)− α

(
TM,∇TM

)
[M ]

)
∈ Q/Z .

4.9. Remark. Other interesting invariants have expressions similar to (4.3).
(1) The Eells-Kuiper invariant distinguishes all diffeomorphism types of ex-

otic spheres that bound parallelisable manifolds in dimension 4k − 1
for k = 1, 2, 3, see [37]. Stolz constructs a similar invariant that de-
tects all exotic spheres bounding parallelisable manifolds in all dimen-
sions 4k − 1 in [78]. Stolz’ invariant also has a presentation in terms of
η-invariants and Cheeger-Simons correction terms.

(2) Rokhlin’s theorem says that the signature of a spin manifold in dimen-
sion 8k + 4 is divisible by 16. One can define a secondary Rokhlin
number in R/16Z for spin structures on 8k + 3-dimensional manifolds.
Lee and Miller express the Rokhlin number as a linear combination of
η-invariants as above and without local correction terms [67]. In par-
ticular, condition (4.2) is not needed. If spin structures differ only by
the mod 2 reduction of an integer cohomology class, then Dahl proved
that the Rokhlin number mod 8 remains unchanged [29].

Note that µ(M) changes sign if the orientation of M is reversed, and that µ is
additive under connected sums. Hence, given any closed spin 4k−1-manifold M
that satisfies assumption (4.2) and an exotic sphere Σ, µ(M#Σ#r) takes as
many different values in Q/Z as µ(Σ#r) does for r ∈ Z. This way, one can con-
struct and detect a certain number of exotic smooth structures on manifolds M
for which µ(M) is defined.

As an example, for k = 2 the Eells-Kuiper invariant becomes

µ(M) =
η + h

2
(D) +

η

25 · 7
(B)− 1

27 · 7
(p1 p̂1)

(
TM,∇TM

)
[M ] .

This invariant is one of the main ingredients in the diffeomorphism classifica-
tion of S3-bundles over S4 by Crowley-Escher [27], and also in the examples
discussed in section 4.e.
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We now come back to manifolds of positive scalar curvature. Note that µ(M)
is not a spin-cobordism invariant because µ(M1)−µ(M0) depends on tk ·sign(N)
if ∂N = M1 −M0 by (4.3). We thus cannot expect to refine µ(M) to a spin+-
cobordism invariant. Thus, we call two positive scalar curvature metrics g0, g1

on M concordant if there exists a positive scalar curvature metric g on M×[0, T ]
for some T > 0 that is isometric to g0×dt2 on M× [0, ε) and to g1×dt2 on M×
(T − ε, T ]. From the discussion preceding Theorem 4.5, we see that metrics in
the same connected component of the space of scalar curvature metrics are
concordant.

4.10. Theorem (Kreck-Stolz, [58]). Let M be a closed spin 4k − 1-manifold
satisfying (4.2). Then the refined Eells-Kuiper invariant

µ̄(M, [g]) = ε(k)
(η

2
(D)− tk η(B)− α

(
TM,∇TM

)
[M ]

)
∈ R

is well-defined on concordance classes [g] of positive scalar curvature metrics
on M . Moreover, if [g0], [g1] are two such concordance classes, then

µ̄(M, [g1])− µ̄(M, [g0]) ∈ Z .

All members of the family of Aloff-Wallach spaces M ∼= SU(3)/S1 allow
metrics of positive sectional curvature, and the numbers µ̄(M) are computed
in [57]. For Witten’s family of Ricci-positive homogeneous Einstein mani-
folds M ∼= SU(3) × SU(2) × S1/SU(2) × S1 × S1, the invariants µ̄(M) are
computed in [56].

4.11. Theorem (Kreck-Stolz, [58]). (1) There exist closed manifolds with
a non-connected moduli space of positive sectional curvature metrics.

(2) There exist closed manifolds for which the moduli space of Ricci positive
metrics has infinitely many connected components.

4.d. Kreck-Stolz invariants of complex and quaternionic line bundles.
In [56], Kreck and Stolz define three invariants that determine the diffeomor-
phism type of certain 7-manifolds completely. For spin manifolds, their first
invariant is precisely the Eells-Kuiper invariant of the previous section. The
other two invariants use Dirac operators twisted by complex line bundles. For
non-spin-manifold, similar invariants are defined that use a spinc-Dirac opera-
tor in place of the Dirac operator. We will restrict attention to the spin case
for simplicity.

Thus assume that M is a closed simply connected spin 7-manifold with

(4.5) H1(M) = H3(M) = 0, H2(M) ∼= Z, and H4(M) ∼= Z/`Z ,

where H4(M) is generated by the square of a generator of H2(M). In particular,
condition (4.2) holds. Since H2(M) classifies complex line bundles, for each
class a ∈ H2(M), there exists a complex line bundle L → M with Chern
class c1(L) = a, which is unique up to isomorphism. Let ∇L be a connection,
then as in (4.4) above, there exists a unique class v(L,∇l) ∈ Ω3(M)/ im d such
that

dv(L,∇L) = c1(L,∇L)2 .
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We define a universal formal power series ch′ in c1 such that

ch(L)− 1− c1(L) = c2
1(L) ch′(L) .

Now, let DL denote the Dirac operator twisted by (L,∇L), and put

(4.6) sM (a) =
η + h

2
(DL)− η + h

2
(D)

−
(
Â
(
TM,∇TM

) (
v ch′

)(
L,∇L

))
[M ] ∈ Q/Z .

Let u ∈ H2(M) be a generator, then the remaining two Kreck-Stolz invariants
are given by

s2(M) = sM (u) and s3(M) = sM (2u) .

Clearly, s2 and s3 determine sM completely. Also, one can recover the linking
form onH4(M) and the half Pontrijagin class p1

2 (TM) ∈ H4(M) from s2 and s3.
Indeed, M bounds a compact spin manifold N , and by Theorem 1.1,

(4.7) sM (a) =
(
Â(TM)(ch(L)− 1)

)
[N,M ] =

(
a2

24

(
a2 − p1

2
(TM)

))
[N,M ] .

In particular,

24sM (a) = lkM
(
a2, a2 − p1

2
(TM)

)
∈ Q/Z .

Hepworth generalises the Kreck-Stolz classification in his thesis [50] to simply
connected closed spin 7-manifolds with

H1(M) = H3(M) = 0, H2(M) ∼= Zr and #H4(M) <∞ ,

such that H4(M) is generated by products of elements of H2(M) and p1
2 (TM).

A 7-manifold M is called highly connected if π1(M) = π2(M) = 0. If π3(M)
is finite, then

H1(M) = H2(M) = H3(M) = 0 and #H4(M) <∞ .

Since H4(M) is not necessarily generated by p1
2 (TM), the results of Hepworth

do not apply. Crowley has shown in [26] that a highly connected 7-manifolds is
determined up to diffeomorphism by its Eells-Kuiper invariant and a quadratic
form qM : H4(M)×H4(M)→ Q/Z satisfying

qM (a+ b) = qM (a) + qM (b) + lkM (a, b)

and qM (−a) = qM (a) + lkM
(
a,
p1

2
(TM)

)
.

Note that these properties do not define qM uniquely if H4(M) has 2-torsion.
An extrinsic definition of qM using a handlebody N with ∂N = M can be found
in [26]. The quadratic form qM can also be recovered from a Kreck-Stolz type
invariant t that we now describe.

Assume that M is a closed 4k − 1-dimensional spin manifold satisfying

(4.8) H3(M ; R) = H4(M ; R) = 0 .
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Let H → M be a quaternionic Hermitian line bundle. Equivalently, H is a
complex rank 2 vector with structure group SU(2). In particular, the determi-
nant line bundle detH is trivialised. Then the Chern character of H is a formal
power series in c2, and there exists a formal power series ch′ in c2 such that

2− ch(H) = c2(H) · ch′(H)

for all quaternionic line bundles H.
We fix a compatible connection ∇H on H → M . By assumption (4.8) and

as in (4.4), there exists a unique class ĉ2(H,∇H) ∈ Ω3(M)/ im d such that

dĉ2(H,∇H) = c2(H,∇H) .

Let DH denote the Dirac operator twisted by H and note that S ⊗H carries
a quaternionic structure if and only if S carries a real structure and vice versa.
Let ε(k) be as in Theorem 4.6. In [28], we define the t-invariant of H in analogy
with (4.6) by

(4.9) tM (H) = ε(k + 1)
(
η + h

2
(DH)− (η + h)(D)

+
(
Â
(
TM,∇TM

)(
ĉ2 ch′

)(
H,∇H

))
[M ]

)
∈ Q/Z .

If M is a highly connected closed 7-manifold with H4(M) finite, then for
each a ∈ H4(M), there exists a quaternionic line bundle H →M with c2(H) =
a, and similar as in (4.7), we find that

qM (a) = 12 tM (H) .

Note that the invariants tM and sM are related. Let L → M be a complex
line bundle with c1(L) = a. Then H = L ⊕ L̄ carries a natural quaternionic
structure. It follows from (4.6) and (4.9) that tM (H) = 2ε(k + 1) sM (a), so tM
generalises sM in dimension 8`− 1.

4.12. Example. Let π : M → S4 be the unit sphere bundle of a real vector
bundle W → S4 of rank 4, and pick a quaternionic line bundle H → S4, such
that

n = e(W ), p =
p1

2
(W ), and a = c2(H) ∈ Z ∼= H4(S4) .

Note that n and p are of the same parity. Then c2(π∗H) = a ∈ Z/nZ ∼= H4(M)
by the Gysin sequence. As shown in [28],

tM (π∗H) =
a(p− a)

24n
and qM (a) =

a(p− a)
2n

∈ Q/Z .

Together with the computation of the Eells-Kuiper invariant

µ(M) =
p2 − n

25 · 7 · n
∈ Q/Z

in [27], one can recover the Crowley-Escher diffeomorphism classification of S3-
bundles over S4.
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The above example already shows that different quaternionic line bundles
can have the same second Chern class, but different t-invariants. In fact, the
classifying space BSU(2) ∼= HP∞ for quaternionic line bundles is not a K(π, 4)
because

π`+1(BSU(2)) ∼= π`(SU(2)) ∼= π`(S3)
by the exact sequence of the fibre bundle ESU(2)→ BSU(2). Hence, c2 alone
does not classify quaternionic line bundles. Take M = S7 as an example, then
quaternionic line bundles are classified by elements of

π7(BSU(2)) ∼= π6(S3) ∼= Z/12Z .

We prove in [28] that on highly connected 7-manifold M with π3(M) finite
as above, π6(S3) acts simply transitively on the set of isomorphism classes of
quaternionic line bundles with a fixed second Chern class. The group π6(S3)
acts freely by a clutching construction over a small S6 ⊂M , and this action is
detected by the t-invariant.

The t-invariant also distinguishes all quaternionic line bundles on S11, but
not on S15. Regard the sequence of Hopf fibrations and inclusions

. . . S4k−1 S4k+3

↘ ↙ ↘ ↙ ↘
HP k−1 HP k . . .

.

Here, HP k decomposes along S4k−1 into a 4k-disk and a 4-disk bundle
over HP k−1. A quaternionic line bundle on HP k−1 can be extended to HP k
if and only if its pullback to S4k−1 is trivial. The t-invariant on S4k−1

is thus an obstruction against such an extension. By cellular approxima-
tion, quaternionic line bundles on HP k are classified by homotopy classes of
maps HP k → HP k ⊂ HP∞ ∼= BSU(2). If we compute the t-invariants
on S7, S11, . . . , S4k−1 for a quaternionic line bundle with a given second Chern
class, we recover precisely the obstructions against self maps of HP k found by
Feder and Gitler in [39].

Finally, Crowley also defines an analogous quadratic form qM on H8(M)
for highly connected 15-manifolds M in [26]. An intrinsic formula for qM will
probably involve the unique string structure on M in the same way that (4.9)
above uses the unique spin structure.

4.e. Seven-manifolds of positive curvature. Riemannian metrics of pos-
itive sectional curvature on closed manifolds are a rare phenomenon, and
sharp conditions for their existence are far from being understood. Apart
from the obvious symmetric examples, few other manifolds are known. Many
of these other examples are seven-dimensional manifolds that are either of
Kreck-Stolz type (4.5) or highly connected. The homogeneous Aloff-Wallach
spaces SU(3)/U(1) and their biquotient analogues, the Eschenburg space, have
been classified using Kreck-Stolz invariants in [57], [1] and [59]. Kruggel uses a
cobordism with lens spaces, whose η-invariants have already been given in [4].

The Berger space SO(5)/SO(3) is diffeomorphic to a particular S3-bundle
over S4. For the proof in [45], one needs to know that it is homeomorphic to
such a bundle by [54]. Then the Eells-Kuiper invariant of SO(5)/SO(3) together
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with the classification of all S3-bundles over S4 in [27] suffices to determine the
diffeomorphism type.

One is still interested in finding new examples of positive curvature metrics.
Grove, Wilking and Ziller [48] give two families (Pk), (Qk) of 7-manifolds and
one exceptional space R, which possibly allow such metrics and contain new
examples. The spaces Pk are highly connected, whereas Qk and R are of Kreck-
Stolz type. In [47], Grove, Verdiani and Ziller constructed a positive sectional
curvature metric on P2 (note that P1 = S7); another construction is due to
Dearricott [32]. On the other hand, the space R does not carry a metric of
cohomogeneity one with positive sectional curvature by a result of Verdiani
and Ziller [80].

The spaces Pk form Seifert fibrations with generic fibre S3 over some base
orbifold Bk as indicated in [48]. We apply Theorem 3.2 to determine the η-
invariants in (4.2) and (4.9) in the adiabatic limit and compute µ(Pk) and tPk
for all Pk.

4.13. Theorem ([44]). The Eells-Kuiper invariant of Pk is given by

µ(Pk) = −4k3 − 7k + 3
25 · 3 · 7

∈ Q/Z .(1)

Crowley’s quadratic form q on H4(Pk) ∼= Z/kZ is given by

q(`) =
`(`− k)

2k
∈ Q/Z .(2)

By comparing these values with the corresponding values for S3-bundles
over S4 in [27] and [28], see Example 4.12, one can construct manifolds that
are diffeomorphic to Pk.

4.14. Theorem ([44]). Let Ek,k → S4 denote the principal S3-bundle with Euler
class k ∈ H4(S4) ∼= Z, and let Σ7 denote the exotic seven sphere with µ(Σ7) =
1
28 . Then there exists an orientation preserving diffeomorphism

Pk ∼= Ek,k # Σ
# k−k3

6
7 .

In particular, Pk and Ek,k are homeomorphic.

This result also implies that P2 with reversed orientation is diffeomorphic to
some S3-bundle over S4, and to T1S

4#Σ7, where T1S
4 denotes the unit tangent

bundle of S4.
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